|
import asyncio
|
|
import os
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import (
|
|
AgentFinishAction,
|
|
CmdRunAction,
|
|
IPythonRunCellAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='xingyaoww/od-eval-logic-reasoning:v1.0',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
runtime_extra_deps='$OH_INTERPRETER_PATH -m pip install scitools-pyke',
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def get_choice(answer_str):
|
|
choices = [
|
|
'A',
|
|
'B',
|
|
'C',
|
|
'D',
|
|
'E',
|
|
'F',
|
|
'G',
|
|
'H',
|
|
'A)',
|
|
'B)',
|
|
'C)',
|
|
'D)',
|
|
'E)',
|
|
'F)',
|
|
'G)',
|
|
'H)',
|
|
'A.',
|
|
'B.',
|
|
'C.',
|
|
'D.',
|
|
'E.',
|
|
'F.',
|
|
'G.',
|
|
'H.',
|
|
]
|
|
for c in choices:
|
|
if answer_str.startswith(c):
|
|
return c.replace(')', '')
|
|
|
|
if answer_str.startswith(':'):
|
|
return answer_str.replace(':', '').replace('.', '').strip()
|
|
return None
|
|
|
|
|
|
def get_test_result(
|
|
model_answer: str,
|
|
ground_truth: str,
|
|
) -> dict[str, bool]:
|
|
gold_answer = ground_truth.replace('(', '').replace(')', '').strip()
|
|
answer_str = model_answer if model_answer is not None else ''
|
|
prediction = get_choice(answer_str)
|
|
|
|
indicators = [
|
|
'the correct option is',
|
|
'the correct answer is',
|
|
'The correct answer is',
|
|
'The correct option is',
|
|
'the answer is',
|
|
]
|
|
if prediction is None:
|
|
for indicator in indicators:
|
|
if answer_str.find(indicator) >= 0:
|
|
answer_str = answer_str.split(indicator)[1].strip()
|
|
prediction = get_choice(answer_str)
|
|
break
|
|
|
|
isTrue = prediction == gold_answer
|
|
test_result = {'result': isTrue}
|
|
return test_result
|
|
|
|
|
|
CUR_EVAL_DIR = os.path.dirname(__file__)
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
|
|
runtime.copy_to(os.path.join(CUR_EVAL_DIR, 'logic_inference.py'), '/workspace')
|
|
|
|
obs = runtime.run_action(CmdRunAction(command='ls /workspace'))
|
|
assert obs.exit_code == 0
|
|
assert 'logic_inference.py' in obs.content
|
|
|
|
runtime.add_env_vars({'DATASET_NAME': metadata.dataset})
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace/.cache_program')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = IPythonRunCellAction(code='%pip install scitools-pyke')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
ipynb_obs = runtime.run_action(action)
|
|
logger.info(ipynb_obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
|
|
with open(os.path.join(CUR_EVAL_DIR, 'instruction.txt'), 'r') as f:
|
|
INSTRUCTION_TEMPLATE = f.read()
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
|
|
|
|
instance_logic_programs = instance['raw_logic_programs'][0].strip()
|
|
instruction = (
|
|
INSTRUCTION_TEMPLATE.replace('[[dataset_name]]', dataset_name)
|
|
.replace('[[logic_programs]]', instance_logic_programs)
|
|
.replace('[[logic_inference_path.py]]', '/workspace/logic_inference.py')
|
|
)
|
|
|
|
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
|
|
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
final_message = ''
|
|
for event in reversed(state.history):
|
|
if isinstance(event, AgentFinishAction):
|
|
final_message = event.thought
|
|
break
|
|
elif isinstance(event, MessageAction):
|
|
final_message = event.content
|
|
break
|
|
|
|
final_message = final_message.strip("'")
|
|
logger.info(
|
|
f'Predicted answer: {final_message}, Ground truth: {instance["answer"]}'
|
|
)
|
|
|
|
test_result = get_test_result(
|
|
model_answer=final_message, ground_truth=instance['answer']
|
|
)
|
|
test_result['final_message'] = final_message
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance['instance_id'],
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--dataset',
|
|
type=str,
|
|
help='the logic reasoning dataset to evaluate on {ProntoQA, ProofWriter}',
|
|
default='ProofWriter',
|
|
)
|
|
parser.add_argument(
|
|
'--data-split',
|
|
type=str,
|
|
help='data split to evaluate on {validation}',
|
|
default='validation',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
dataset_name = args.dataset
|
|
data_split = args.data_split
|
|
dataset = load_dataset(f'renma/{dataset_name}')
|
|
dataset_df = dataset[data_split].to_pandas()
|
|
dataset_df.rename(columns={'id': 'instance_id'}, inplace=True)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
dataset_name,
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
|