ar08's picture
Upload 1040 files
246d201 verified
import asyncio
import os
import pandas as pd
from datasets import load_dataset
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import (
AgentFinishAction,
CmdRunAction,
IPythonRunCellAction,
MessageAction,
)
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have solved the question, please first send your answer to user through message and then exit.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='xingyaoww/od-eval-logic-reasoning:v1.0',
enable_auto_lint=True,
use_host_network=False,
runtime_extra_deps='$OH_INTERPRETER_PATH -m pip install scitools-pyke',
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def get_choice(answer_str):
choices = [
'A',
'B',
'C',
'D',
'E',
'F',
'G',
'H',
'A)',
'B)',
'C)',
'D)',
'E)',
'F)',
'G)',
'H)',
'A.',
'B.',
'C.',
'D.',
'E.',
'F.',
'G.',
'H.',
]
for c in choices:
if answer_str.startswith(c):
return c.replace(')', '')
if answer_str.startswith(':'):
return answer_str.replace(':', '').replace('.', '').strip()
return None
def get_test_result(
model_answer: str,
ground_truth: str,
) -> dict[str, bool]:
gold_answer = ground_truth.replace('(', '').replace(')', '').strip()
answer_str = model_answer if model_answer is not None else ''
prediction = get_choice(answer_str)
indicators = [
'the correct option is',
'the correct answer is',
'The correct answer is',
'The correct option is',
'the answer is',
]
if prediction is None:
for indicator in indicators:
if answer_str.find(indicator) >= 0:
answer_str = answer_str.split(indicator)[1].strip()
prediction = get_choice(answer_str)
break
isTrue = prediction == gold_answer
test_result = {'result': isTrue}
return test_result
CUR_EVAL_DIR = os.path.dirname(__file__)
def initialize_runtime(
runtime: Runtime,
instance: pd.Series, # this argument is not required
):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
# copy logic_inference.py to /workspace
runtime.copy_to(os.path.join(CUR_EVAL_DIR, 'logic_inference.py'), '/workspace')
# check if the file exists
obs = runtime.run_action(CmdRunAction(command='ls /workspace'))
assert obs.exit_code == 0
assert 'logic_inference.py' in obs.content
runtime.add_env_vars({'DATASET_NAME': metadata.dataset})
action = CmdRunAction(command='mkdir -p /workspace/.cache_program')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = IPythonRunCellAction(code='%pip install scitools-pyke')
logger.info(action, extra={'msg_type': 'ACTION'})
ipynb_obs = runtime.run_action(action)
logger.info(ipynb_obs, extra={'msg_type': 'OBSERVATION'})
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
# Prepare instruction
with open(os.path.join(CUR_EVAL_DIR, 'instruction.txt'), 'r') as f:
INSTRUCTION_TEMPLATE = f.read()
def process_instance(
instance: pd.Series,
metadata: EvalMetadata,
reset_logger: bool = True,
):
config = get_config(metadata)
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
else:
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
instance_logic_programs = instance['raw_logic_programs'][0].strip()
instruction = (
INSTRUCTION_TEMPLATE.replace('[[dataset_name]]', dataset_name)
.replace('[[logic_programs]]', instance_logic_programs)
.replace('[[logic_inference_path.py]]', '/workspace/logic_inference.py')
)
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime, instance)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
metadata.agent_class
),
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
final_message = ''
for event in reversed(state.history):
if isinstance(event, AgentFinishAction):
final_message = event.thought
break
elif isinstance(event, MessageAction):
final_message = event.content
break
final_message = final_message.strip("'")
logger.info(
f'Predicted answer: {final_message}, Ground truth: {instance["answer"]}'
)
test_result = get_test_result(
model_answer=final_message, ground_truth=instance['answer']
)
test_result['final_message'] = final_message
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=instance['instance_id'],
instruction=instruction,
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
test_result=test_result,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
help='the logic reasoning dataset to evaluate on {ProntoQA, ProofWriter}',
default='ProofWriter',
)
parser.add_argument(
'--data-split',
type=str,
help='data split to evaluate on {validation}', # right now we only support validation split
default='validation',
)
args, _ = parser.parse_known_args()
dataset_name = args.dataset
data_split = args.data_split
dataset = load_dataset(f'renma/{dataset_name}')
dataset_df = dataset[data_split].to_pandas()
dataset_df.rename(columns={'id': 'instance_id'}, inplace=True)
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
metadata = make_metadata(
llm_config,
dataset_name,
args.agent_cls,
args.max_iterations,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(dataset_df, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)