|
"""Implements evaluation of agents on ML-Bench, a benchmark for assessing the effectiveness of
|
|
Large Language Models (LLMs) in leveraging existing functions in open-source libraries for
|
|
machine learning tasks. The benchmark is introduced in the paper "ML-Bench: Evaluating Large
|
|
Language Models for Code Generation in Repository-Level Machine Learning Tasks"
|
|
(https://arxiv.org/abs/2311.09835).
|
|
|
|
Please see https://ghcr.io/super-dainiu/ml_bench and https://huggingface.co/datasets/super-dainiu/ml-bench
|
|
for more details on the dataset and docker image used in this evaluation script.
|
|
|
|
TODOs:
|
|
- Support additional evaluation settings, such as providing raw README content or using a
|
|
retriever to extract relevant segments.
|
|
- Clean up the code and docker image used for evaluation.
|
|
"""
|
|
|
|
import asyncio
|
|
import os
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
load_app_config,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
config = load_app_config()
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
AGENT_CLS_TO_INST_SUFFIX = {
|
|
'CodeActAgent': 'When you think you have completed the task, please finish the interaction using the "finish" tool.\n'
|
|
}
|
|
|
|
ID2CONDA = {
|
|
1: 'dgl_DS',
|
|
2: 'bert_DS',
|
|
3: 'lavis_DS',
|
|
4: 'if_DS',
|
|
5: 'V2V_DS',
|
|
6: 'esm_DS',
|
|
7: 'OP_DS',
|
|
8: 'TSL_DS',
|
|
9: 'EAP_DS',
|
|
10: 'PG_DS',
|
|
11: 'PIM_DS',
|
|
12: 'AD2_DS',
|
|
13: 'L3_DS',
|
|
14: 'MZ2_DS',
|
|
15: 'GSA2_DS',
|
|
}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='public.ecr.aws/i5g0m1f6/ml-bench',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
|
|
action = CmdRunAction(command=f'conda activate {ID2CONDA[instance["github_id"]]}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
repo_url = instance['github']
|
|
repo_name = repo_url.split('/')[-1]
|
|
action = CmdRunAction(command=f'git clone {repo_url} /workspace/{repo_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command=f'chmod -R 777 /workspace/{repo_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
|
|
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
|
|
action = CmdRunAction(command=f'cd {task_path}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
repo_url = instance['github']
|
|
repo_name = repo_url.split('/')[-1]
|
|
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
|
|
|
|
|
|
eval_script = os.path.join(task_path, 'run.sh')
|
|
logger.info(f'Running evaluation script: {eval_script}')
|
|
|
|
action = CmdRunAction(command=f'cat {eval_script}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
if obs.exit_code == 0:
|
|
eval_script_content = obs.content
|
|
else:
|
|
logger.error(f'Error reading evaluation script: {obs.content}')
|
|
eval_script_content = ''
|
|
|
|
action = CmdRunAction(
|
|
command=f'timeout 120s conda run -n {ID2CONDA[instance["github_id"]]} bash {eval_script}',
|
|
timeout=600,
|
|
)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
if obs.exit_code == 0:
|
|
eval_output = obs.content
|
|
else:
|
|
logger.error(f'Error running evaluation script: {obs.content}')
|
|
eval_output = ''
|
|
|
|
outputs = {
|
|
'eval_script_content': eval_script_content,
|
|
'eval_output': eval_output,
|
|
}
|
|
if obs.exit_code != 0 and obs.exit_code != 124:
|
|
logger.warning(f'Evaluation script failed with exit code {obs.exit_code}')
|
|
logger.warning(f'Output: {eval_output}')
|
|
outputs['success'] = int(
|
|
'KeyboardInterrupt' in eval_output
|
|
)
|
|
|
|
else:
|
|
logger.info(f'Evaluation script succeeded with exit code {obs.exit_code}')
|
|
logger.info(f'Output: {eval_output}')
|
|
outputs['success'] = 1
|
|
outputs['eval_exit_code'] = obs.exit_code
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return outputs
|
|
|
|
|
|
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
|
|
config = get_config(metadata)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance['instance_id'], log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance["instance_id"]}.')
|
|
|
|
repo_url = instance['github']
|
|
repo_name = repo_url.split('/')[-1]
|
|
task_path = os.path.join('/workspace', repo_name, instance['path'][2:])
|
|
|
|
instruction = (
|
|
f'Please complete the Machine Learning task in the following repository: {repo_name}\n\n'
|
|
f'{instance["instruction"]}\n\n'
|
|
'You should create a script named `run.sh` under the specified path in the repo to run the task.\n\n'
|
|
f'You can find the task repo at: {task_path}\n\n'
|
|
+ (
|
|
'Here is the prefix code for the task:\n'
|
|
'```bash\n'
|
|
f'{instance["prefix_code"]}\n'
|
|
'```\n\n'
|
|
if instance['prefix_code']
|
|
else ''
|
|
)
|
|
+ 'You should terminate the subprocess after running the task (e.g., call subprocess.Popen(args).wait()).'
|
|
)
|
|
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
assert state is not None
|
|
metrics = state.metrics.get() if state.metrics else {}
|
|
|
|
test_result = complete_runtime(runtime)
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance['instance_id'],
|
|
instance=instance.to_dict(),
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
test_result=test_result,
|
|
metrics=metrics,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'-s',
|
|
'--eval-split',
|
|
type=str,
|
|
default='quarter',
|
|
choices=['full', 'quarter'],
|
|
help='data split to evaluate on, either full or quarter',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
data_split = args.eval_split
|
|
|
|
ml_bench = load_dataset('super-dainiu/ml-bench', split=data_split).to_pandas()
|
|
ml_bench.rename(columns={'id': 'instance_id'}, inplace=True)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
f'ml-bench-{data_split}',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(ml_bench, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
|