|
import asyncio
|
|
import os
|
|
from typing import Any
|
|
|
|
import pandas as pd
|
|
from datasets import load_dataset
|
|
from tqdm import tqdm
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
codeact_user_response,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
update_llm_config_for_completions_logging,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
get_parser,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import CmdRunAction, MessageAction
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
|
|
'CodeActAgent': codeact_user_response,
|
|
}
|
|
|
|
LOCAL_DATASET_PATH = os.path.join(os.path.dirname(__file__), 'benchmark')
|
|
|
|
|
|
def format_task_dict(example, use_knowledge):
|
|
task = {
|
|
'instance_id': example['instance_id'],
|
|
'task_inst': example['task_inst'],
|
|
'dataset_path': '/benchmark/datasets/'
|
|
+ example['dataset_folder_tree'].split('\n')[0][4:],
|
|
'dataset_folder_tree': example['dataset_folder_tree'],
|
|
'dataset_preview': example['dataset_preview'],
|
|
'pred_program_name': 'pred_' + example['gold_program_name'],
|
|
}
|
|
|
|
if use_knowledge:
|
|
task['task_inst'] += '\n' + str(example['domain_knowledge'])
|
|
|
|
return task
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
instance_id: str,
|
|
) -> AppConfig:
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime=os.environ.get('RUNTIME', 'docker'),
|
|
max_budget_per_task=4,
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='docker.io/xingyaoww/openhands-eval-scienceagentbench',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
timeout=300,
|
|
api_key=os.environ.get('ALLHANDS_API_KEY', None),
|
|
remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'),
|
|
keep_runtime_alive=False,
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(
|
|
update_llm_config_for_completions_logging(
|
|
metadata.llm_config,
|
|
metadata.eval_output_dir,
|
|
instance_id,
|
|
)
|
|
)
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
):
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace/pred_programs')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace/pred_results')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
dataset_name = instance['dataset_folder_tree'].split('\n')[0][4:].rstrip('/')
|
|
|
|
|
|
dataset_dir = os.path.join(
|
|
LOCAL_DATASET_PATH,
|
|
'datasets',
|
|
dataset_name,
|
|
)
|
|
runtime.copy_to(dataset_dir, '/workspace/benchmark/datasets', recursive=True)
|
|
|
|
|
|
action = CmdRunAction(command='cd /workspace/benchmark/datasets && ls')
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
assert obs.exit_code == 0
|
|
assert dataset_name in obs.content
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
instance: pd.Series,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
test_result = {}
|
|
|
|
action = CmdRunAction(command='cd /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
|
|
assert obs.exit_code == 0
|
|
|
|
action = CmdRunAction(command=f'cat pred_programs/{instance.pred_program_name}')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
|
|
if obs.exit_code == 0:
|
|
test_result = {'program': obs.content}
|
|
else:
|
|
test_result = {'program': 'ERROR'}
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return test_result
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
) -> EvalOutput:
|
|
instance_id = instance.instance_id.replace('/', '__')
|
|
config = get_config(metadata, instance_id)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, instance_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {instance_id}.')
|
|
|
|
instruction = f"""You are an expert Python programming assistant that helps scientist users to write high-quality code to solve their tasks.
|
|
Given a user request, you are expected to write a complete program that accomplishes the requested task and save any outputs to `/workspace/pred_results/` in the correct format.
|
|
|
|
Here's the user request you need to work on:
|
|
{instance.task_inst}
|
|
|
|
You can access the dataset at `{instance.dataset_path}`. Here is the directory structure of the dataset:
|
|
```
|
|
{instance.dataset_folder_tree}
|
|
```
|
|
Here are some helpful previews for the dataset file(s):
|
|
{instance.dataset_preview}
|
|
|
|
Please save your program as `/workspace/pred_programs/{instance.pred_program_name}`.
|
|
Then, please run the program to check and fix any errors.
|
|
Please do NOT run the program in the background.
|
|
If the program uses some packages that are incompatible, please figure out alternative implementations and do NOT restart the environment.
|
|
|
|
"""
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
initialize_runtime(runtime, instance)
|
|
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=instruction),
|
|
runtime=runtime,
|
|
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN.get(
|
|
metadata.agent_class
|
|
),
|
|
)
|
|
)
|
|
|
|
|
|
test_result = complete_runtime(runtime, instance)
|
|
|
|
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=instance.instance_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result=test_result,
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = get_parser()
|
|
parser.add_argument(
|
|
'--use-knowledge',
|
|
type=str,
|
|
default='false',
|
|
choices=['true', 'false'],
|
|
help='use expert-provided knowledge or not',
|
|
)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
sab_dataset = load_dataset('osunlp/ScienceAgentBench', split='validation')
|
|
|
|
dataset_processed = []
|
|
for example in tqdm(sab_dataset):
|
|
dataset_processed.append(
|
|
format_task_dict(example, args.use_knowledge == 'true')
|
|
)
|
|
|
|
dataset = pd.DataFrame(dataset_processed)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
'ScienceAgentBench',
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
dataset['instance_id'] = dataset['instance_id'].apply(str)
|
|
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances, metadata, output_file, args.eval_num_workers, process_instance
|
|
)
|
|
|