ar08's picture
Upload 1040 files
246d201 verified
import asyncio
import os
from typing import Any
import pandas as pd
from evaluation.benchmarks.toolqa.utils import encode_question, eval_answer, get_data
from evaluation.utils.shared import (
EvalMetadata,
EvalOutput,
codeact_user_response,
compatibility_for_eval_history_pairs,
make_metadata,
prepare_dataset,
reset_logger_for_multiprocessing,
run_evaluation,
)
from openhands.controller.state.state import State
from openhands.core.config import (
AppConfig,
SandboxConfig,
get_llm_config_arg,
get_parser,
)
from openhands.core.logger import openhands_logger as logger
from openhands.core.main import create_runtime, run_controller
from openhands.events.action import CmdRunAction, MessageAction
from openhands.events.observation import CmdOutputObservation
from openhands.runtime.base import Runtime
from openhands.utils.async_utils import call_async_from_sync
AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = {
'CodeActAgent': codeact_user_response,
}
AGENT_CLS_TO_INST_SUFFIX = {
'CodeActAgent': 'When you think you have completed the request, please finish the interaction using the "finish" tool.\n'
}
def get_config(
metadata: EvalMetadata,
) -> AppConfig:
config = AppConfig(
default_agent=metadata.agent_class,
run_as_openhands=False,
runtime='docker',
max_iterations=metadata.max_iterations,
sandbox=SandboxConfig(
base_container_image='python:3.12-bookworm',
enable_auto_lint=True,
use_host_network=False,
),
# do not mount workspace
workspace_base=None,
workspace_mount_path=None,
)
config.set_llm_config(metadata.llm_config)
agent_config = config.get_agent_config(metadata.agent_class)
agent_config.enable_prompt_extensions = False
return config
def initialize_runtime(runtime: Runtime):
"""Initialize the runtime for the agent.
This function is called before the runtime is used to run the agent.
"""
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
obs: CmdOutputObservation
# Set instance id
action = CmdRunAction(command='mkdir -p /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
action = CmdRunAction(command='cd /workspace')
logger.info(action, extra={'msg_type': 'ACTION'})
obs = runtime.run_action(action)
assert obs.exit_code == 0
runtime.add_env_vars({'WOLFRAM_ALPHA_APPID': args.wolfram_alpha_appid})
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
def process_instance(instance: Any, metadata: EvalMetadata, reset_logger: bool = True):
config = get_config(metadata)
qid = instance.qid
question = instance.question
answer = instance.answer
# Setup the logger properly, so you can run multi-processing to parallelize the evaluation
if reset_logger:
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
reset_logger_for_multiprocessing(logger, qid, log_dir)
else:
logger.info(f'Starting evaluation for instance {qid}.')
# Prepare instruction
instruction = encode_question(question)
instruction += 'IMPORTANT: You should ONLY interact with the environment provided to you AND NEVER ASK FOR HUMAN HELP.\n'
# NOTE: You can actually set slightly different instruction for different agents
instruction += AGENT_CLS_TO_INST_SUFFIX[metadata.agent_class]
logger.info(f'Instruction:\n{instruction}', extra={'msg_type': 'OBSERVATION'})
runtime = create_runtime(config)
call_async_from_sync(runtime.connect)
initialize_runtime(runtime)
# Here's how you can run the agent (similar to the `main` function) and get the final task state
state: State | None = asyncio.run(
run_controller(
config=config,
initial_user_action=MessageAction(content=instruction),
runtime=runtime,
fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[
metadata.agent_class
],
)
)
# ======= Attempt to evaluate the agent's edits =======
# If you are working on simpler benchmark that only evaluates the final model output (e.g., in a MessageAction)
# You can simply get the LAST `MessageAction` from the returned `state.history` and parse it for evaluation.
if state is None:
raise ValueError('State should not be None.')
# retrieve the last message from the agent
last_agent_message = state.get_last_agent_message()
model_answer_raw = last_agent_message.content if last_agent_message else ''
# attempt to parse model_answer
correct = eval_answer(str(model_answer_raw), str(answer))
logger.info(f'Final message: {model_answer_raw} | Correctness: {correct}')
metrics = state.metrics.get() if state.metrics else None
# history is now available as a stream of events, rather than list of pairs of (Action, Observation)
# for compatibility with the existing output format, we can remake the pairs here
# remove when it becomes unnecessary
histories = compatibility_for_eval_history_pairs(state.history)
# Save the output
output = EvalOutput(
instance_id=qid,
test_result={
'model_answer_raw': model_answer_raw,
'correct': correct,
},
metadata=metadata,
history=histories,
metrics=metrics,
error=state.last_error if state and state.last_error else None,
)
return output
if __name__ == '__main__':
parser = get_parser()
parser.add_argument(
'--dataset',
type=str,
help='Which dataset to evaluate from ToolQA. ToolQA contains 8 datasets, namely agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp. For example, the default is --dataset flight.',
default='flight',
)
parser.add_argument(
'--hardness',
type=str,
help='Which level of difficulty to evaluate from ToolQA. ToolQA contains 2 levels of hardness, namely easy and hard. For example, the default is --hardness easy.',
default='easy',
)
parser.add_argument(
'--wolfram-alpha-appid',
type=str,
help='wolfram alpha appid to use for wolfram alpha related tests',
default='YOUR_WOLFRAMALPHA_APPID',
)
args, _ = parser.parse_known_args()
llm_config = None
if args.llm_config:
llm_config = get_llm_config_arg(args.llm_config)
# modify_params must be False for evaluation purpose, for reproducibility and accurancy of results
llm_config.modify_params = False
if llm_config is None:
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
dataset = ''
hardness = ''
dataset_choices = [
'agenda',
'airbnb',
'coffee',
'dblp',
'flight',
'gsm8k',
'scirex',
'yelp',
'genda',
]
if args.dataset not in dataset_choices:
raise ValueError(
'Please choose from agenda, airbnb, coffee, dblp, flight, gsm8k, scirex, yelp for dataset.'
)
if args.hardness not in ['easy', 'hard']:
raise ValueError('Please choose from easy and hard for hardness.')
toolqa_test = pd.DataFrame(get_data(dataset, hardness))
toolqa_test.rename(columns={'qid': 'instance_id'}, inplace=True)
metadata = make_metadata(
llm_config,
f'toolqa-{args.dataset}-{args.hardness}',
args.agent_cls,
args.eval_note,
args.eval_output_dir,
)
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
instances = prepare_dataset(toolqa_test, output_file, args.eval_n_limit)
run_evaluation(
instances, metadata, output_file, args.eval_num_workers, process_instance
)