zzz / openhands /llm /fn_call_converter.py
ar08's picture
Upload 1040 files
246d201 verified
"""Convert function calling messages to non-function calling messages and vice versa.
This will inject prompts so that models that doesn't support function calling
can still be used with function calling agents.
We follow format from: https://docs.litellm.ai/docs/completion/function_call
"""
import copy
import json
import re
from typing import Iterable
from litellm import ChatCompletionToolParam
from openhands.core.exceptions import (
FunctionCallConversionError,
FunctionCallValidationError,
)
# Inspired by: https://docs.together.ai/docs/llama-3-function-calling#function-calling-w-llama-31-70b
SYSTEM_PROMPT_SUFFIX_TEMPLATE = """
You have access to the following functions:
{description}
If you choose to call a function ONLY reply in the following format with NO suffix:
<function=example_function_name>
<parameter=example_parameter_1>value_1</parameter>
<parameter=example_parameter_2>
This is the value for the second parameter
that can span
multiple lines
</parameter>
</function>
<IMPORTANT>
Reminder:
- Function calls MUST follow the specified format, start with <function= and end with </function>
- Required parameters MUST be specified
- Only call one function at a time
- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after.
- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls
"""
STOP_WORDS = ['</function']
# NOTE: we need to make sure this example is always in-sync with the tool interface designed in openhands/agenthub/codeact_agent/function_calling.py
IN_CONTEXT_LEARNING_EXAMPLE_PREFIX = """
Here's a running example of how to perform a task with the provided tools.
--------------------- START OF EXAMPLE ---------------------
USER: Create a list of numbers from 1 to 10, and display them in a web page at port 5000.
ASSISTANT: Sure! Let me first check the current directory:
<function=execute_bash>
<parameter=command>
pwd && ls
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
/workspace
openhands@runtime:~/workspace$
ASSISTANT: There is no `app.py` file in the current directory. Let me create a Python file `app.py`:
<function=str_replace_editor>
<parameter=command>create</parameter>
<parameter=path>/workspace/app.py</parameter>
<parameter=file_text>
from flask import Flask
app = Flask(__name__)
@app.route('/')
def index():
numbers = list(range(1, 11))
return str(numbers)
if __name__ == '__main__':
app.run(port=5000)
</parameter>
</function>
USER: EXECUTION RESULT of [str_replace_editor]:
File created successfully at: /workspace/app.py
ASSISTANT: I have created a Python file `app.py` that will display a list of numbers from 1 to 10 when you run it. Let me run the Python file for you:
<function=execute_bash>
<parameter=command>
python3 app.py > server.log 2>&1 &
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
[1] 121
[1]+ Exit 1 python3 app.py > server.log 2>&1
ASSISTANT: Looks like the server is running with PID 121 then crashed. Let me check the server log:
<function=execute_bash>
<parameter=command>
cat server.log
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
Traceback (most recent call last):
File "/workspace/app.py", line 2, in <module>
from flask import Flask
ModuleNotFoundError: No module named 'flask'
ASSISTANT: Looks like the server crashed because the `flask` module is not installed. Let me install the `flask` module for you:
<function=execute_bash>
<parameter=command>
pip3 install flask
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
Defaulting to user installation because normal site-packages is not writeable
Collecting flask
Using cached flask-3.0.3-py3-none-any.whl (101 kB)
Collecting blinker>=1.6.2
Using cached blinker-1.7.0-py3-none-any.whl (13 kB)
Collecting Werkzeug>=3.0.0
Using cached werkzeug-3.0.2-py3-none-any.whl (226 kB)
Collecting click>=8.1.3
Using cached click-8.1.7-py3-none-any.whl (97 kB)
Collecting itsdangerous>=2.1.2
Using cached itsdangerous-2.2.0-py3-none-any.whl (16 kB)
Requirement already satisfied: Jinja2>=3.1.2 in /home/openhands/.local/lib/python3.10/site-packages (from flask) (3.1.3)
Requirement already satisfied: MarkupSafe>=2.0 in /home/openhands/.local/lib/python3.10/site-packages (from Jinja2>=3.1.2->flask) (2.1.5)
Installing collected packages: Werkzeug, itsdangerous, click, blinker, flask
Successfully installed Werkzeug-3.0.2 blinker-1.7.0 click-8.1.7 flask-3.0.3 itsdangerous-2.2.0
ASSISTANT: The `flask` module is installed successfully. Let me run the Python file again:
<function=execute_bash>
<parameter=command>
python3 app.py > server.log 2>&1 &
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
[1] 124
ASSISTANT:
Let me check the server log again:
<function=execute_bash>
<parameter=command>
cat server.log
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
* Serving Flask app 'app'
* Debug mode: off
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on http://127.0.0.1:5000
Press CTRL+C to quit
ASSISTANT:
The server is running on port 5000 with PID 124. You can access the list of numbers by visiting http://127.0.0.1:5000. If you have any further questions, feel free to ask!
USER: Now kill the server, make it display the numbers in a table format.
ASSISTANT:
Sure! Let me stop the server first:
<function=execute_bash>
<parameter=command>
kill 124
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
[1]+ Terminated python3 app.py > server.log 2>&1
ASSISTANT:
Now let me display the numbers in a table format:
<function=str_replace_editor>
<parameter=command>str_replace</parameter>
<parameter=path>/workspace/app.py</parameter>
<parameter=old_str>return str(numbers)</parameter>
<parameter=new_str>return '<table>' + ''.join([f'<tr><td>{i}</td></tr>' for i in numbers]) + '</table>'</parameter>
</function>
USER: EXECUTION RESULT of [str_replace_editor]:
The file /workspace/app.py has been edited. Here's the result of running `cat -n` on a snippet of /workspace/app.py:
3
4 @app.route('/')
5 def index():
6 numbers = list(range(1, 11))
7 return '<table>' + ''.join([f'<tr><td>{i}</td></tr>' for i in numbers]) + '</table>'
8
9 if __name__ == '__main__':
10 app.run(port=5000)
Review the changes and make sure they are as expected. Edit the file again if necessary.
ASSISTANT:
Running the updated file:
<function=execute_bash>
<parameter=command>
<parameter=command>
python3 app.py > server.log 2>&1 &
</parameter>
</function>
USER: EXECUTION RESULT of [execute_bash]:
[1] 126
ASSISTANT:
The server is running on port 5000 with PID 126. You can access the list of numbers in a table format by visiting http://127.0.0.1:5000. Let me know if you have any further requests!
<function=finish>
</function>
--------------------- END OF EXAMPLE ---------------------
Do NOT assume the environment is the same as in the example above.
--------------------- NEW TASK DESCRIPTION ---------------------
""".lstrip()
IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX = """
--------------------- END OF NEW TASK DESCRIPTION ---------------------
PLEASE follow the format strictly! PLEASE EMIT ONE AND ONLY ONE FUNCTION CALL PER MESSAGE.
"""
# Regex patterns for function call parsing
FN_REGEX_PATTERN = r'<function=([^>]+)>\n(.*?)</function>'
FN_PARAM_REGEX_PATTERN = r'<parameter=([^>]+)>(.*?)</parameter>'
# Add new regex pattern for tool execution results
TOOL_RESULT_REGEX_PATTERN = r'EXECUTION RESULT of \[(.*?)\]:\n(.*)'
def convert_tool_call_to_string(tool_call: dict) -> str:
"""Convert tool call to content in string format."""
if 'function' not in tool_call:
raise FunctionCallConversionError("Tool call must contain 'function' key.")
if 'id' not in tool_call:
raise FunctionCallConversionError("Tool call must contain 'id' key.")
if 'type' not in tool_call:
raise FunctionCallConversionError("Tool call must contain 'type' key.")
if tool_call['type'] != 'function':
raise FunctionCallConversionError("Tool call type must be 'function'.")
ret = f"<function={tool_call['function']['name']}>\n"
try:
args = json.loads(tool_call['function']['arguments'])
except json.JSONDecodeError as e:
raise FunctionCallConversionError(
f"Failed to parse arguments as JSON. Arguments: {tool_call['function']['arguments']}"
) from e
for param_name, param_value in args.items():
is_multiline = isinstance(param_value, str) and '\n' in param_value
ret += f'<parameter={param_name}>'
if is_multiline:
ret += '\n'
ret += f'{param_value}'
if is_multiline:
ret += '\n'
ret += '</parameter>\n'
ret += '</function>'
return ret
def convert_tools_to_description(tools: list[dict]) -> str:
ret = ''
for i, tool in enumerate(tools):
assert tool['type'] == 'function'
fn = tool['function']
if i > 0:
ret += '\n'
ret += f"---- BEGIN FUNCTION #{i+1}: {fn['name']} ----\n"
ret += f"Description: {fn['description']}\n"
if 'parameters' in fn:
ret += 'Parameters:\n'
properties = fn['parameters'].get('properties', {})
required_params = set(fn['parameters'].get('required', []))
for j, (param_name, param_info) in enumerate(properties.items()):
# Indicate required/optional in parentheses with type
is_required = param_name in required_params
param_status = 'required' if is_required else 'optional'
param_type = param_info.get('type', 'string')
# Get parameter description
desc = param_info.get('description', 'No description provided')
# Handle enum values if present
if 'enum' in param_info:
enum_values = ', '.join(f'`{v}`' for v in param_info['enum'])
desc += f'\nAllowed values: [{enum_values}]'
ret += (
f' ({j+1}) {param_name} ({param_type}, {param_status}): {desc}\n'
)
else:
ret += 'No parameters are required for this function.\n'
ret += f'---- END FUNCTION #{i+1} ----\n'
return ret
def convert_fncall_messages_to_non_fncall_messages(
messages: list[dict],
tools: list[ChatCompletionToolParam],
add_in_context_learning_example: bool = True,
) -> list[dict]:
"""Convert function calling messages to non-function calling messages."""
messages = copy.deepcopy(messages)
formatted_tools = convert_tools_to_description(tools)
system_prompt_suffix = SYSTEM_PROMPT_SUFFIX_TEMPLATE.format(
description=formatted_tools
)
converted_messages = []
first_user_message_encountered = False
for message in messages:
role = message['role']
content = message['content']
# 1. SYSTEM MESSAGES
# append system prompt suffix to content
if role == 'system':
if isinstance(content, str):
content += system_prompt_suffix
elif isinstance(content, list):
if content and content[-1]['type'] == 'text':
content[-1]['text'] += system_prompt_suffix
else:
content.append({'type': 'text', 'text': system_prompt_suffix})
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
converted_messages.append({'role': 'system', 'content': content})
# 2. USER MESSAGES (no change)
elif role == 'user':
# Add in-context learning example for the first user message
if not first_user_message_encountered and add_in_context_learning_example:
first_user_message_encountered = True
# Check tools
if not (
tools
and len(tools) > 0
and any(
(
tool['type'] == 'function'
and tool['function']['name'] == 'execute_bash'
and 'command'
in tool['function']['parameters']['properties']
)
for tool in tools
)
and any(
(
tool['type'] == 'function'
and tool['function']['name'] == 'str_replace_editor'
and 'path' in tool['function']['parameters']['properties']
and 'file_text'
in tool['function']['parameters']['properties']
and 'old_str'
in tool['function']['parameters']['properties']
and 'new_str'
in tool['function']['parameters']['properties']
)
for tool in tools
)
):
raise FunctionCallConversionError(
'The currently provided tool set are NOT compatible with the in-context learning example for FnCall to Non-FnCall conversion. '
'Please update your tool set OR the in-context learning example in openhands/llm/fn_call_converter.py'
)
# add in-context learning example
if isinstance(content, str):
content = (
IN_CONTEXT_LEARNING_EXAMPLE_PREFIX
+ content
+ IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX
)
elif isinstance(content, list):
if content and content[0]['type'] == 'text':
content[0]['text'] = (
IN_CONTEXT_LEARNING_EXAMPLE_PREFIX
+ content[0]['text']
+ IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX
)
else:
content = (
[
{
'type': 'text',
'text': IN_CONTEXT_LEARNING_EXAMPLE_PREFIX,
}
]
+ content
+ [
{
'type': 'text',
'text': IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX,
}
]
)
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
converted_messages.append(
{
'role': 'user',
'content': content,
}
)
# 3. ASSISTANT MESSAGES
# - 3.1 no change if no function call
# - 3.2 change if function call
elif role == 'assistant':
if 'tool_calls' in message and message['tool_calls'] is not None:
if len(message['tool_calls']) != 1:
raise FunctionCallConversionError(
f'Expected exactly one tool call in the message. More than one tool call is not supported. But got {len(message["tool_calls"])} tool calls. Content: {content}'
)
try:
tool_content = convert_tool_call_to_string(message['tool_calls'][0])
except FunctionCallConversionError as e:
raise FunctionCallConversionError(
f'Failed to convert tool call to string.\nCurrent tool call: {message["tool_calls"][0]}.\nRaw messages: {json.dumps(messages, indent=2)}'
) from e
if isinstance(content, str):
content += '\n\n' + tool_content
content = content.lstrip()
elif isinstance(content, list):
if content and content[-1]['type'] == 'text':
content[-1]['text'] += '\n\n' + tool_content
content[-1]['text'] = content[-1]['text'].lstrip()
else:
content.append({'type': 'text', 'text': tool_content})
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
converted_messages.append({'role': 'assistant', 'content': content})
# 4. TOOL MESSAGES (tool outputs)
elif role == 'tool':
# Convert tool result as user message
tool_name = message.get('name', 'function')
prefix = f'EXECUTION RESULT of [{tool_name}]:\n'
# and omit "tool_call_id" AND "name"
if isinstance(content, str):
content = prefix + content
elif isinstance(content, list):
if content and content[-1]['type'] == 'text':
content[-1]['text'] = prefix + content[-1]['text']
else:
content = [{'type': 'text', 'text': prefix}] + content
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
converted_messages.append({'role': 'user', 'content': content})
else:
raise FunctionCallConversionError(
f'Unexpected role {role}. Expected system, user, assistant or tool.'
)
return converted_messages
def _extract_and_validate_params(
matching_tool: dict, param_matches: Iterable[re.Match], fn_name: str
) -> dict:
params = {}
# Parse and validate parameters
required_params = set()
if 'parameters' in matching_tool and 'required' in matching_tool['parameters']:
required_params = set(matching_tool['parameters'].get('required', []))
allowed_params = set()
if 'parameters' in matching_tool and 'properties' in matching_tool['parameters']:
allowed_params = set(matching_tool['parameters']['properties'].keys())
param_name_to_type = {}
if 'parameters' in matching_tool and 'properties' in matching_tool['parameters']:
param_name_to_type = {
name: val.get('type', 'string')
for name, val in matching_tool['parameters']['properties'].items()
}
# Collect parameters
found_params = set()
for param_match in param_matches:
param_name = param_match.group(1)
param_value = param_match.group(2).strip()
# Validate parameter is allowed
if allowed_params and param_name not in allowed_params:
raise FunctionCallValidationError(
f"Parameter '{param_name}' is not allowed for function '{fn_name}'. "
f'Allowed parameters: {allowed_params}'
)
# Validate and convert parameter type
# supported: string, integer, array
if param_name in param_name_to_type:
if param_name_to_type[param_name] == 'integer':
try:
param_value = int(param_value)
except ValueError:
raise FunctionCallValidationError(
f"Parameter '{param_name}' is expected to be an integer."
)
elif param_name_to_type[param_name] == 'array':
try:
param_value = json.loads(param_value)
except json.JSONDecodeError:
raise FunctionCallValidationError(
f"Parameter '{param_name}' is expected to be an array."
)
else:
# string
pass
# Enum check
if 'enum' in matching_tool['parameters']['properties'][param_name]:
if (
param_value
not in matching_tool['parameters']['properties'][param_name]['enum']
):
raise FunctionCallValidationError(
f"Parameter '{param_name}' is expected to be one of {matching_tool['parameters']['properties'][param_name]['enum']}."
)
params[param_name] = param_value
found_params.add(param_name)
# Check all required parameters are present
missing_params = required_params - found_params
if missing_params:
raise FunctionCallValidationError(
f"Missing required parameters for function '{fn_name}': {missing_params}"
)
return params
def _fix_stopword(content: str) -> str:
"""Fix the issue when some LLM would NOT return the stopword."""
if '<function=' in content and content.count('<function=') == 1:
if content.endswith('</'):
content = content.rstrip() + 'function>'
else:
content = content + '\n</function>'
return content
def convert_non_fncall_messages_to_fncall_messages(
messages: list[dict],
tools: list[ChatCompletionToolParam],
) -> list[dict]:
"""Convert non-function calling messages back to function calling messages."""
messages = copy.deepcopy(messages)
formatted_tools = convert_tools_to_description(tools)
system_prompt_suffix = SYSTEM_PROMPT_SUFFIX_TEMPLATE.format(
description=formatted_tools
)
converted_messages = []
tool_call_counter = 1 # Counter for tool calls
first_user_message_encountered = False
for message in messages:
role, content = message['role'], message['content']
content = content or '' # handle cases where content is None
# For system messages, remove the added suffix
if role == 'system':
if isinstance(content, str):
# Remove the suffix if present
content = content.split(system_prompt_suffix)[0]
elif isinstance(content, list):
if content and content[-1]['type'] == 'text':
# Remove the suffix from the last text item
content[-1]['text'] = content[-1]['text'].split(
system_prompt_suffix
)[0]
converted_messages.append({'role': 'system', 'content': content})
# Skip user messages (no conversion needed)
elif role == 'user':
# Check & replace in-context learning example
if not first_user_message_encountered:
first_user_message_encountered = True
if isinstance(content, str):
content = content.replace(IN_CONTEXT_LEARNING_EXAMPLE_PREFIX, '')
content = content.replace(IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX, '')
elif isinstance(content, list):
for item in content:
if item['type'] == 'text':
item['text'] = item['text'].replace(
IN_CONTEXT_LEARNING_EXAMPLE_PREFIX, ''
)
item['text'] = item['text'].replace(
IN_CONTEXT_LEARNING_EXAMPLE_SUFFIX, ''
)
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
# Check for tool execution result pattern
if isinstance(content, str):
tool_result_match = re.search(
TOOL_RESULT_REGEX_PATTERN, content, re.DOTALL
)
elif isinstance(content, list):
tool_result_match = next(
(
_match
for item in content
if item.get('type') == 'text'
and (
_match := re.search(
TOOL_RESULT_REGEX_PATTERN, item['text'], re.DOTALL
)
)
),
None,
)
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
if tool_result_match:
if not (
isinstance(content, str)
or (
isinstance(content, list)
and len(content) == 1
and content[0].get('type') == 'text'
)
):
raise FunctionCallConversionError(
f'Expected str or list with one text item when tool result is present in the message. Content: {content}'
)
tool_name = tool_result_match.group(1)
tool_result = tool_result_match.group(2).strip()
# Convert to tool message format
converted_messages.append(
{
'role': 'tool',
'name': tool_name,
'content': [{'type': 'text', 'text': tool_result}]
if isinstance(content, list)
else tool_result,
'tool_call_id': f'toolu_{tool_call_counter-1:02d}', # Use last generated ID
}
)
else:
converted_messages.append({'role': 'user', 'content': content})
# Handle assistant messages
elif role == 'assistant':
if isinstance(content, str):
content = _fix_stopword(content)
fn_match = re.search(FN_REGEX_PATTERN, content, re.DOTALL)
elif isinstance(content, list):
if content and content[-1]['type'] == 'text':
content[-1]['text'] = _fix_stopword(content[-1]['text'])
fn_match = re.search(
FN_REGEX_PATTERN, content[-1]['text'], re.DOTALL
)
else:
fn_match = None
fn_match_exists = any(
item.get('type') == 'text'
and re.search(FN_REGEX_PATTERN, item['text'], re.DOTALL)
for item in content
)
if fn_match_exists and not fn_match:
raise FunctionCallConversionError(
f'Expecting function call in the LAST index of content list. But got content={content}'
)
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
if fn_match:
fn_name = fn_match.group(1)
fn_body = fn_match.group(2)
matching_tool = next(
(
tool['function']
for tool in tools
if tool['type'] == 'function'
and tool['function']['name'] == fn_name
),
None,
)
# Validate function exists in tools
if not matching_tool:
raise FunctionCallValidationError(
f"Function '{fn_name}' not found in available tools: {[tool['function']['name'] for tool in tools if tool['type'] == 'function']}"
)
# Parse parameters
param_matches = re.finditer(FN_PARAM_REGEX_PATTERN, fn_body, re.DOTALL)
params = _extract_and_validate_params(
matching_tool, param_matches, fn_name
)
# Create tool call with unique ID
tool_call_id = f'toolu_{tool_call_counter:02d}'
tool_call = {
'index': 1, # always 1 because we only support **one tool call per message**
'id': tool_call_id,
'type': 'function',
'function': {'name': fn_name, 'arguments': json.dumps(params)},
}
tool_call_counter += 1 # Increment counter
# Remove the function call part from content
if isinstance(content, list):
assert content and content[-1]['type'] == 'text'
content[-1]['text'] = (
content[-1]['text'].split('<function=')[0].strip()
)
elif isinstance(content, str):
content = content.split('<function=')[0].strip()
else:
raise FunctionCallConversionError(
f'Unexpected content type {type(content)}. Expected str or list. Content: {content}'
)
converted_messages.append(
{'role': 'assistant', 'content': content, 'tool_calls': [tool_call]}
)
else:
# No function call, keep message as is
converted_messages.append(message)
else:
raise FunctionCallConversionError(
f'Unexpected role {role}. Expected system, user, or assistant in non-function calling messages.'
)
return converted_messages
def convert_from_multiple_tool_calls_to_single_tool_call_messages(
messages: list[dict],
ignore_final_tool_result: bool = False,
) -> list[dict]:
"""Break one message with multiple tool calls into multiple messages."""
converted_messages = []
pending_tool_calls: dict[str, dict] = {}
for message in messages:
role, content = message['role'], message['content']
if role == 'assistant':
if message.get('tool_calls') and len(message['tool_calls']) > 1:
# handle multiple tool calls by breaking them into multiple messages
for i, tool_call in enumerate(message['tool_calls']):
pending_tool_calls[tool_call['id']] = {
'role': 'assistant',
'content': content if i == 0 else '',
'tool_calls': [tool_call],
}
else:
converted_messages.append(message)
elif role == 'tool':
if message['tool_call_id'] in pending_tool_calls:
# remove the tool call from the pending list
_tool_call_message = pending_tool_calls.pop(message['tool_call_id'])
converted_messages.append(_tool_call_message)
# add the tool result
converted_messages.append(message)
else:
assert (
len(pending_tool_calls) == 0
), f'Found pending tool calls but not found in pending list: {pending_tool_calls=}'
converted_messages.append(message)
else:
assert (
len(pending_tool_calls) == 0
), f'Found pending tool calls but not expect to handle it with role {role}: {pending_tool_calls=}, {message=}'
converted_messages.append(message)
if not ignore_final_tool_result and len(pending_tool_calls) > 0:
raise FunctionCallConversionError(
f'Found pending tool calls but no tool result: {pending_tool_calls=}'
)
return converted_messages