zzz / openhands /memory /memory.py
ar08's picture
Upload 1040 files
246d201 verified
import json
from openhands.core.config import AgentConfig, LLMConfig
from openhands.core.logger import openhands_logger as logger
from openhands.events.event import Event
from openhands.events.serialization.event import event_to_memory
from openhands.events.stream import EventStream
from openhands.utils.embeddings import (
LLAMA_INDEX_AVAILABLE,
EmbeddingsLoader,
check_llama_index,
)
# Conditional imports based on llama_index availability
if LLAMA_INDEX_AVAILABLE:
import chromadb
from llama_index.core import Document
from llama_index.core.indices.vector_store.base import VectorStoreIndex
from llama_index.core.indices.vector_store.retrievers.retriever import (
VectorIndexRetriever,
)
from llama_index.core.schema import TextNode
from llama_index.vector_stores.chroma import ChromaVectorStore
class LongTermMemory:
"""Handles storing information for the agent to access later, using chromadb."""
event_stream: EventStream
def __init__(
self,
llm_config: LLMConfig,
agent_config: AgentConfig,
event_stream: EventStream,
):
"""Initialize the chromadb and set up ChromaVectorStore for later use."""
check_llama_index()
# initialize the chromadb client
db = chromadb.PersistentClient(
path=f'./cache/sessions/{event_stream.sid}/memory',
# FIXME anonymized_telemetry=False,
)
self.collection = db.get_or_create_collection(name='memories')
vector_store = ChromaVectorStore(chroma_collection=self.collection)
# embedding model
embedding_strategy = llm_config.embedding_model
self.embed_model = EmbeddingsLoader.get_embedding_model(
embedding_strategy, llm_config
)
logger.debug(f'Using embedding model: {self.embed_model}')
# instantiate the index
self.index = VectorStoreIndex.from_vector_store(vector_store, self.embed_model)
self.thought_idx = 0
# initialize the event stream
self.event_stream = event_stream
# max of threads to run the pipeline
self.memory_max_threads = agent_config.memory_max_threads
def add_event(self, event: Event):
"""Adds a new event to the long term memory with a unique id.
Parameters:
- event: The new event to be added to memory
"""
try:
# convert the event to a memory-friendly format, and don't truncate
event_data = event_to_memory(event, -1)
except (json.JSONDecodeError, KeyError, ValueError) as e:
logger.warning(f'Failed to process event: {e}')
return
# determine the event type and ID
event_type = ''
event_id = ''
if 'action' in event_data:
event_type = 'action'
event_id = event_data['action']
elif 'observation' in event_data:
event_type = 'observation'
event_id = event_data['observation']
# create a Document instance for the event
doc = Document(
text=json.dumps(event_data),
doc_id=str(self.thought_idx),
extra_info={
'type': event_type,
'id': event_id,
'idx': self.thought_idx,
},
)
self.thought_idx += 1
logger.debug('Adding %s event to memory: %d', event_type, self.thought_idx)
self._add_document(document=doc)
def _add_document(self, document: 'Document'):
"""Inserts a single document into the index."""
self.index.insert_nodes([self._create_node(document)])
def _create_node(self, document: 'Document') -> 'TextNode':
"""Create a TextNode from a Document instance."""
return TextNode(
text=document.text,
doc_id=document.doc_id,
extra_info=document.extra_info,
)
def search(self, query: str, k: int = 10) -> list[str]:
"""Searches through the current memory using VectorIndexRetriever.
Parameters:
- query (str): A query to match search results to
- k (int): Number of top results to return
Returns:
- list[str]: List of top k results found in current memory
"""
retriever = VectorIndexRetriever(
index=self.index,
similarity_top_k=k,
)
results = retriever.retrieve(query)
for result in results:
logger.debug(
f'Doc ID: {result.doc_id}:\n Text: {result.get_text()}\n Score: {result.score}'
)
return [r.get_text() for r in results]
def _events_to_docs(self) -> list['Document']:
"""Convert all events from the EventStream to documents for batch insert into the index."""
try:
events = self.event_stream.get_events()
except Exception as e:
logger.debug(f'No events found for session {self.event_stream.sid}: {e}')
return []
documents: list[Document] = []
for event in events:
try:
# convert the event to a memory-friendly format, and don't truncate
event_data = event_to_memory(event, -1)
# determine the event type and ID
event_type = ''
event_id = ''
if 'action' in event_data:
event_type = 'action'
event_id = event_data['action']
elif 'observation' in event_data:
event_type = 'observation'
event_id = event_data['observation']
# create a Document instance for the event
doc = Document(
text=json.dumps(event_data),
doc_id=str(self.thought_idx),
extra_info={
'type': event_type,
'id': event_id,
'idx': self.thought_idx,
},
)
documents.append(doc)
self.thought_idx += 1
except (json.JSONDecodeError, KeyError, ValueError) as e:
logger.warning(f'Failed to process event: {e}')
continue
if documents:
logger.debug(f'Batch inserting {len(documents)} documents into the index.')
else:
logger.debug('No valid documents found to insert into the index.')
return documents
def create_nodes(self, documents: list['Document']) -> list['TextNode']:
"""Create nodes from a list of documents."""
return [self._create_node(doc) for doc in documents]