Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,198 +1,197 @@
|
|
1 |
-
import time
|
2 |
-
import uuid
|
3 |
-
|
4 |
-
import cv2
|
5 |
-
import gradio as gr
|
6 |
-
import numpy as np
|
7 |
-
import spaces
|
8 |
-
import supervision as sv
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
12 |
-
|
13 |
-
# Detect if CUDA is available and set the device accordingly
|
14 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
|
16 |
-
# Load the processor and model from Hugging Face
|
17 |
-
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
|
18 |
-
model = AutoModelForZeroShotObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(device)
|
19 |
-
|
20 |
-
# Custom CSS to enhance text area visibility
|
21 |
-
css = """
|
22 |
-
.feedback textarea {font-size: 24px !important}
|
23 |
-
"""
|
24 |
-
|
25 |
-
# Initialize global variables
|
26 |
-
global classes
|
27 |
-
global detections
|
28 |
-
global labels
|
29 |
-
global threshold
|
30 |
-
|
31 |
-
# Set default values
|
32 |
-
classes = "person, university, class, Liectenstein"
|
33 |
-
detections = None
|
34 |
-
labels = None
|
35 |
-
threshold = 0.2
|
36 |
-
|
37 |
-
# Instantiate annotators for bounding boxes, masks, and labels
|
38 |
-
|
39 |
-
MASK_ANNOTATOR = sv.MaskAnnotator()
|
40 |
-
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
41 |
-
|
42 |
-
# Frame subsampling factor for video processing efficiency
|
43 |
-
SUBSAMPLE = 2
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
output_image =
|
49 |
-
output_image =
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
<
|
147 |
-
<a href="https://
|
148 |
-
<a href="https://
|
149 |
-
<a href="https://
|
150 |
-
<
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
gr.Markdown(
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
demo.launch(show_error=True)
|
|
|
1 |
+
import time
|
2 |
+
import uuid
|
3 |
+
|
4 |
+
import cv2
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import supervision as sv
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
|
12 |
+
|
13 |
+
# Detect if CUDA is available and set the device accordingly
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
|
16 |
+
# Load the processor and model from Hugging Face
|
17 |
+
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
|
18 |
+
model = AutoModelForZeroShotObjectDetection.from_pretrained("omlab/omdet-turbo-swin-tiny-hf").to(device)
|
19 |
+
|
20 |
+
# Custom CSS to enhance text area visibility
|
21 |
+
css = """
|
22 |
+
.feedback textarea {font-size: 24px !important}
|
23 |
+
"""
|
24 |
+
|
25 |
+
# Initialize global variables
|
26 |
+
global classes
|
27 |
+
global detections
|
28 |
+
global labels
|
29 |
+
global threshold
|
30 |
+
|
31 |
+
# Set default values
|
32 |
+
classes = "person, university, class, Liectenstein"
|
33 |
+
detections = None
|
34 |
+
labels = None
|
35 |
+
threshold = 0.2
|
36 |
+
|
37 |
+
# Instantiate annotators for bounding boxes, masks, and labels
|
38 |
+
BOX_ANNOTATOR = sv.BoxAnnotator() # Updated from BoundingBoxAnnotator
|
39 |
+
MASK_ANNOTATOR = sv.MaskAnnotator()
|
40 |
+
LABEL_ANNOTATOR = sv.LabelAnnotator()
|
41 |
+
|
42 |
+
# Frame subsampling factor for video processing efficiency
|
43 |
+
SUBSAMPLE = 2
|
44 |
+
|
45 |
+
def annotate_image(input_image, detections, labels) -> np.ndarray:
|
46 |
+
"""Applies mask, bounding box, and label annotations to a given image."""
|
47 |
+
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
|
48 |
+
output_image = BOX_ANNOTATOR.annotate(output_image, detections) # Updated
|
49 |
+
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
|
50 |
+
return output_image
|
51 |
+
|
52 |
+
|
53 |
+
@spaces.GPU
|
54 |
+
def process_video(input_video, confidence_threshold, classes_new, progress=gr.Progress(track_tqdm=True)):
|
55 |
+
"""Processes the input video frame by frame, performs object detection, and saves the output video."""
|
56 |
+
global detections, labels, classes, threshold
|
57 |
+
classes = classes_new
|
58 |
+
threshold = confidence_threshold
|
59 |
+
|
60 |
+
# Generate a unique file name for the output video
|
61 |
+
result_file_name = f"output_{uuid.uuid4()}.mp4"
|
62 |
+
|
63 |
+
# Read input video and set up output video writer
|
64 |
+
cap = cv2.VideoCapture(input_video)
|
65 |
+
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # MP4 codec
|
66 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
67 |
+
width, height = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
68 |
+
desired_fps = fps // SUBSAMPLE
|
69 |
+
iterating, frame = cap.read()
|
70 |
+
|
71 |
+
# Prepare video writer for output
|
72 |
+
segment_file = cv2.VideoWriter(result_file_name, video_codec, desired_fps, (width, height))
|
73 |
+
batch, frames, predict_index = [], [], []
|
74 |
+
n_frames = 0
|
75 |
+
|
76 |
+
while iterating:
|
77 |
+
if n_frames % SUBSAMPLE == 0:
|
78 |
+
predict_index.append(len(frames))
|
79 |
+
batch.append(frame)
|
80 |
+
frames.append(frame)
|
81 |
+
|
82 |
+
# Process a batch of frames at once
|
83 |
+
if len(batch) == desired_fps:
|
84 |
+
classes_list = classes.strip().split(",")
|
85 |
+
results, fps_value = query(batch, classes_list, threshold, (width, height))
|
86 |
+
|
87 |
+
for i, frame in enumerate(frames):
|
88 |
+
if i in predict_index:
|
89 |
+
batch_idx = predict_index.index(i)
|
90 |
+
detections = sv.Detections(
|
91 |
+
xyxy=results[batch_idx]["boxes"].cpu().detach().numpy(),
|
92 |
+
confidence=results[batch_idx]["scores"].cpu().detach().numpy(),
|
93 |
+
class_id=np.array([classes_list.index(result_class) for result_class in results[batch_idx]["classes"]]),
|
94 |
+
data={"class_name": results[batch_idx]["classes"]},
|
95 |
+
)
|
96 |
+
labels = results[batch_idx]["classes"]
|
97 |
+
|
98 |
+
frame = annotate_image(input_image=frame, detections=detections, labels=labels)
|
99 |
+
segment_file.write(frame)
|
100 |
+
|
101 |
+
# Finalize and yield result
|
102 |
+
segment_file.release()
|
103 |
+
yield result_file_name, gr.Markdown(f'<h3 style="text-align: center;">Model inference FPS (batched): {fps_value * len(batch):.2f}</h3>')
|
104 |
+
result_file_name = f"output_{uuid.uuid4()}.mp4"
|
105 |
+
segment_file = cv2.VideoWriter(result_file_name, video_codec, desired_fps, (width, height))
|
106 |
+
batch.clear()
|
107 |
+
frames.clear()
|
108 |
+
predict_index.clear()
|
109 |
+
|
110 |
+
iterating, frame = cap.read()
|
111 |
+
n_frames += 1
|
112 |
+
|
113 |
+
|
114 |
+
def query(frame_batch, classes, confidence_threshold, size=(640, 480)):
|
115 |
+
"""Runs inference on a batch of frames and returns the results."""
|
116 |
+
inputs = processor(images=frame_batch, text=[classes] * len(frame_batch), return_tensors="pt").to(device)
|
117 |
+
|
118 |
+
with torch.no_grad():
|
119 |
+
start_time = time.time()
|
120 |
+
outputs = model(**inputs)
|
121 |
+
fps_value = 1 / (time.time() - start_time)
|
122 |
+
|
123 |
+
target_sizes = torch.tensor([size[::-1]] * len(frame_batch))
|
124 |
+
results = processor.post_process_grounded_object_detection(
|
125 |
+
outputs=outputs, classes=[classes] * len(frame_batch), score_threshold=confidence_threshold, target_sizes=target_sizes
|
126 |
+
)
|
127 |
+
|
128 |
+
return results, fps_value
|
129 |
+
|
130 |
+
|
131 |
+
def set_classes(classes_input):
|
132 |
+
"""Updates the list of classes for detection."""
|
133 |
+
global classes
|
134 |
+
classes = classes_input
|
135 |
+
|
136 |
+
|
137 |
+
def set_confidence_threshold(confidence_threshold_input):
|
138 |
+
"""Updates the confidence threshold for detection."""
|
139 |
+
global threshold
|
140 |
+
threshold = confidence_threshold_input
|
141 |
+
|
142 |
+
|
143 |
+
# Custom footer for the Gradio interface
|
144 |
+
footer = """
|
145 |
+
<div style="text-align: center; margin-top: 20px;">
|
146 |
+
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
|
147 |
+
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
|
148 |
+
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
|
149 |
+
<a href="https://huggingface.co/omlab/omdet-turbo-swin-tiny-hf" target="_blank">omdet-turbo-swin-tiny-hf repo in HF</a>
|
150 |
+
<br>
|
151 |
+
Made with 💖 by Pejman Ebrahimi
|
152 |
+
</div>
|
153 |
+
"""
|
154 |
+
|
155 |
+
# Gradio Interface with the customized theme and DuplicateButton
|
156 |
+
with gr.Blocks(theme='ParityError/Anime', css=css) as demo:
|
157 |
+
gr.Markdown("## Real Time Object Detection with OmDet-Turbo")
|
158 |
+
gr.Markdown(
|
159 |
+
"""
|
160 |
+
This is a demo for real-time open vocabulary object detection using OmDet-Turbo.<br>
|
161 |
+
It utilizes ZeroGPU, which allocates GPU for the first inference.<br>
|
162 |
+
The actual inference FPS is displayed after processing, providing an accurate assessment of performance.<br>
|
163 |
+
"""
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Row():
|
167 |
+
input_video = gr.Video(label="Upload Video")
|
168 |
+
output_video = gr.Video(label="Processed Video", autoplay=True) # Removed 'streaming' argument
|
169 |
+
actual_fps = gr.Markdown("", visible=False)
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
classes = gr.Textbox("person, university, class, Liectenstein", label="Objects to Detect (comma separated)", elem_classes="feedback", scale=3)
|
173 |
+
conf = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.2, step=0.05)
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
submit = gr.Button("Run Detection", variant="primary")
|
177 |
+
duplicate_space = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
178 |
+
|
179 |
+
example_videos = gr.Examples(
|
180 |
+
examples=[["./UNI-LI.mp4", 0.3, "person, university, class, Liectenstein"]],
|
181 |
+
inputs=[input_video, conf, classes],
|
182 |
+
outputs=[output_video, actual_fps]
|
183 |
+
)
|
184 |
+
|
185 |
+
classes.submit(set_classes, classes)
|
186 |
+
conf.change(set_confidence_threshold, conf)
|
187 |
+
|
188 |
+
submit.click(
|
189 |
+
fn=process_video,
|
190 |
+
inputs=[input_video, conf, classes],
|
191 |
+
outputs=[output_video, actual_fps]
|
192 |
+
)
|
193 |
+
|
194 |
+
gr.HTML(footer)
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
demo.launch(show_error=True)
|
|