Bextts / app (3).py
archivartaunik's picture
Upload app (3).py
839218d verified
import spaces
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
import os
import sys
import tempfile
from scipy.io.wavfile import write
# Клонуем рэпазіторый, калі ён яшчэ не загружаны
if not os.path.exists("XTTSv2-Finetuning-for-New-Languages"):
os.system("git clone https://github.com/hellcatmon/XTTSv2-Finetuning-for-New-Languages.git")
# Перамяшчаем тэчку TTS у асноўную дырэкторыю
if os.path.exists("XTTSv2-Finetuning-for-New-Languages/TTS"):
os.system("mv XTTSv2-Finetuning-for-New-Languages/TTS ./")
# Дадаем тэчку TTS у PYTHONPATH
sys.path.append("./TTS")
from tqdm import tqdm
from underthesea import sent_tokenize
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
# Шлях да мадэлі ў Hugging Face
repo_id = "archivartaunik/BE_XTTS_V2_60epoch3Dataset"
checkpoint_file = hf_hub_download(repo_id, filename="model.pth")
config_file = hf_hub_download(repo_id, filename="config.json")
vocab_file = hf_hub_download(repo_id, filename="vocab.json")
default_voice_file = hf_hub_download(repo_id, filename="voice.wav")
# Загрузка канфігурацыі мадэлі
config = XttsConfig()
config.load_json(config_file)
# Ініцыялізацыя і загрузка мадэлі
XTTS_MODEL = Xtts.init_from_config(config)
XTTS_MODEL.load_checkpoint(config, checkpoint_path=checkpoint_file, vocab_path=vocab_file, use_deepspeed=False)
@spaces.GPU(duration=60)
def text_to_speech(belarusian_story, lang="be", speaker_audio_file=None):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
XTTS_MODEL.to(device)
# Калі файл не пададзены, выкарыстоўваем голас па змаўчанні
if not speaker_audio_file or (not isinstance(speaker_audio_file, str) and speaker_audio_file.name == ""):
speaker_audio_file = default_voice_file
# Атрыманне латэнтных умоў і эмацый
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
audio_path=speaker_audio_file,
gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
max_ref_length=XTTS_MODEL.config.max_ref_len,
sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
)
# Токенізацыя тэксту на асобныя сказы
tts_texts = sent_tokenize(belarusian_story)
# Генерацыя аўдыё для кожнага сказы
wav_chunks = []
for text in tqdm(tts_texts):
wav_chunk = XTTS_MODEL.inference(
text=text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=0.1,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=10,
top_p=0.3,
)
wav_chunks.append(torch.tensor(wav_chunk["wav"]))
# Аб'ядноўваем усе часткі аўдыё ў адзін масіў
out_wav = torch.cat(wav_chunks, dim=0).squeeze().cpu().numpy()
# Захоўваем аўдыё ў часовы файл
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
write(temp_file.name, 24000, out_wav)
return temp_file.name
demo = gr.Interface(
fn=text_to_speech,
inputs=[
gr.Textbox(lines=5, label="Тэкст на беларускай мове"),
gr.Textbox(value="be", label="Мова (па змаўчанні BE)", visible=False),
gr.Audio(type="filepath", label="Запішыце або загрузіце файл голасу (без іншых гукаў) не карацей 7 секунд", interactive=True),
],
outputs="audio",
title="XTTS Belarusian TTS Demo",
description="Увядзіце тэкст, і мадэль пераўтворыць яго ў аўдыя. Вы можаце выкарыстоўваць голас па змаўчанні, загрузіць уласны файл або запісаць аўдыё.",
)
if __name__ == "__main__":
demo.launch()