File size: 994 Bytes
c2cbc53
5235ed9
8142bba
f0d20e1
2e88510
c437916
9fa6305
9cb9795
0d1fa55
 
a80dbe8
cbf1d0c
 
 
83ead12
 
 
a425649
0d1fa55
013e3d8
a4be657
8142bba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

tokenizer = AutoTokenizer.from_pretrained("human-centered-summarization/financial-summarization-pegasus")
model = AutoModelForSeq2SeqLM.from_pretrained("human-centered-summarization/financial-summarization-pegasus")

pipe = pipeline(task="text2text-generation", model=model, tokenizer=tokenizer)

with open('text1.txt') as f:
    text1 = f.read()

with open('text2.txt') as f:
    text2 = f.read()

with open('text3.txt') as f:
    text3 = f.read()

gr.Interface.from_pipeline(pipe, 
                    title="Financial Summarization",
                    description="Financial Summarization using google/pegasus-xsum fine-tuned on financial news dataset. Model can be found at https://huggingface.co/human-centered-summarization/financial-summarization-pegasus. Examples are news articles from business.inquirer.net.",
                    examples=[text1,text2,text3]
                    ).launch()