arslan-ahmed's picture
Update app.py
9adc69d
raw
history blame
13.7 kB
import gdown
from dotenv import load_dotenv
import datetime
import openai
import uuid
import gradio as gr
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import RetrievalQA
import os
from langchain.chat_models import ChatOpenAI
from langchain import OpenAI
from langchain.document_loaders import WebBaseLoader, TextLoader, Docx2txtLoader, PyMuPDFLoader
from whatsapp_chat_custom import WhatsAppChatLoader # use this instead of from langchain.document_loaders import WhatsAppChatLoader
from collections import deque
import re
from bs4 import BeautifulSoup
import requests
from urllib.parse import urlparse
import mimetypes
from pathlib import Path
import tiktoken
from ttyd_functions import *
from ttyd_consts import *
###############################################################################################
load_dotenv()
# select the mode at runtime when starting container - modes options are in ttyd_consts.py
if (os.getenv("TTYD_MODE")).split('_')[0]=='personalBot':
mode = mode_arslan
gDriveUrl = os.getenv("GDRIVE_FOLDER_URL")
# output folder of googe drive folder will be taken as input dir of personalBot
gdown.download_folder(url=gDriveUrl, output=mode.inputDir, quiet=True)
if os.getenv("TTYD_MODE")!='personalBot_arslan':
mode.title=''
mode.welcomeMsg=''
elif os.getenv("TTYD_MODE")=='nustian':
mode = mode_nustian
else:
mode = mode_general
if mode.type!='userInputDocs':
# local vector store as opposed to gradio state vector store
vsDict_hard = localData_vecStore(os.getenv("OPENAI_API_KEY"), inputDir=mode.inputDir, file_list=mode.file_list, url_list=mode.url_list)
###############################################################################################
# Gradio
###############################################################################################
def generateExamples(api_key_st, vsDict_st):
qa_chain = RetrievalQA.from_llm(llm=ChatOpenAI(openai_api_key=api_key_st, temperature=0),
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": 4}))
result = qa_chain({'query': exp_query})
answer = result['result'].strip('\n')
grSamples = [[]]
if answer.startswith('1. '):
lines = answer.split("\n") # split the answers into individual lines
list_items = [line.split(". ")[1] for line in lines] # extract each answer after the numbering
grSamples = [[x] for x in list_items] # gr takes list of each item as a list
return grSamples
# initialize chatbot function sets the QA Chain, and also sets/updates any other components to start chatting. updateQaChain function only updates QA chain and will be called whenever Adv Settings are updated.
def initializeChatbot(temp, k, modelName, stdlQs, api_key_st, vsDict_st, progress=gr.Progress()):
progress(0.1, waitText_initialize)
qa_chain_st = updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st)
progress(0.5, waitText_initialize)
#generate welcome message
if mode.welcomeMsg:
welMsg = mode.welcomeMsg
else:
welMsg = qa_chain_st({'question': initialize_prompt, 'chat_history':[]})['answer']
print('Chatbot initialized at ', datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
# exSamples = generateExamples(api_key_st, vsDict_st)
# exSamples_vis = True if exSamples[0] else False
return qa_chain_st, btn.update(interactive=True), initChatbot_btn.update('Chatbot ready. Now visit the chatbot Tab.', interactive=False)\
, aKey_tb.update(), gr.Tabs.update(selected='cb'), chatbot.update(value=[('', welMsg)])
def setApiKey(api_key):
api_key = transformApi(api_key)
try:
openai.Model.list(api_key=api_key) # test the API key
api_key_st = api_key
return aKey_tb.update('API Key accepted', interactive=False, type='text'), aKey_btn.update(interactive=False), api_key_st
except Exception as e:
return aKey_tb.update(str(e), type='text'), *[x.update() for x in [aKey_btn, api_key_state]]
# convert user uploaded data to vectorstore
def uiData_vecStore(userFiles, userUrls, api_key_st, vsDict_st={}, progress=gr.Progress()):
opComponents = [data_ingest_btn, upload_fb, urls_tb]
# parse user data
file_paths = []
documents = []
if userFiles is not None:
if not isinstance(userFiles, list): userFiles = [userFiles]
file_paths = [file.name for file in userFiles]
userUrls = [x.strip() for x in userUrls.split(",")] if userUrls else []
#create documents
documents = data_ingestion(file_list=file_paths, url_list=userUrls, prog=progress)
if documents:
for file in file_paths:
os.remove(file)
else:
return {}, '', *[x.update() for x in opComponents]
# Splitting and Chunks
docs = split_docs(documents)
# Embeddings
try:
api_key_st='Null' if api_key_st is None or api_key_st=='' else api_key_st
openai.Model.list(api_key=api_key_st) # test the API key
embeddings = OpenAIEmbeddings(openai_api_key=api_key_st)
except Exception as e:
return {}, str(e), *[x.update() for x in opComponents]
progress(0.5, 'Creating Vector Database')
vsDict_st = getVsDict(embeddings, docs, vsDict_st)
# get sources from metadata
src_str = getSourcesFromMetadata(vsDict_st['chromaClient'].get()['metadatas'])
src_str = str(src_str[1]) + ' source document(s) successfully loaded in vector store.'+'\n\n' + src_str[0]
progress(1, 'Data loaded')
return vsDict_st, src_str, *[x.update(interactive=False) for x in [data_ingest_btn, upload_fb]], urls_tb.update(interactive=False, placeholder='')
# just update the QA Chain, no updates to any UI
def updateQaChain(temp, k, modelName, stdlQs, api_key_st, vsDict_st):
# if we are not adding data from ui, then use vsDict_hard as vectorstore
if vsDict_st=={} and mode.type!='userInputDocs': vsDict_st=vsDict_hard
modelName = modelName.split('(')[0].strip() # so we can provide any info in brackets
# check if the input model is chat model or legacy model
try:
ChatOpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = ChatOpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
except:
OpenAI(openai_api_key=api_key_st, temperature=0,model_name=modelName,max_tokens=1).predict('')
llm = OpenAI(openai_api_key=api_key_st, temperature=float(temp),model_name=modelName)
# settingsUpdated = 'Settings updated:'+ ' Model=' + modelName + ', Temp=' + str(temp)+ ', k=' + str(k)
# gr.Info(settingsUpdated)
# Now create QA Chain using the LLM
if stdlQs==0: # 0th index i.e. first option
qa_chain_st = RetrievalQA.from_llm(
llm=llm,
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
return_source_documents=True,
input_key = 'question', output_key='answer' # to align with ConversationalRetrievalChain for downstream functions
)
else:
rephQs = False if stdlQs==1 else True
qa_chain_st = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vsDict_st['chromaClient'].as_retriever(search_type="similarity", search_kwargs={"k": int(k)}),
rephrase_question=rephQs,
return_source_documents=True,
return_generated_question=True
)
return qa_chain_st
def respond(message, chat_history, qa_chain):
result = qa_chain({'question': message, "chat_history": [tuple(x) for x in chat_history]})
src_docs = getSourcesFromMetadata([x.metadata for x in result["source_documents"]], sourceOnly=False)[0]
# streaming
streaming_answer = ""
for ele in "".join(result['answer']):
streaming_answer += ele
yield "", chat_history + [(message, streaming_answer)], src_docs, btn.update('Please wait...', interactive=False)
chat_history.extend([(message, result['answer'])])
yield "", chat_history, src_docs, btn.update('Send Message', interactive=True)
#####################################################################################################
with gr.Blocks(theme=gr.themes.Default(primary_hue='orange', secondary_hue='gray', neutral_hue='blue'), css="footer {visibility: hidden}") as demo:
# Initialize state variables - stored in this browser session - these can only be used within input or output of .click/.submit etc, not as a python var coz they are not stored in backend, only as a frontend gradio component
# but if you initialize it with a default value, that value will be stored in backend and accessible across all users. You can also change it with statear.value='newValue'
qa_state = gr.State()
api_key_state = gr.State(os.getenv("OPENAI_API_KEY") if mode.type=='personalBot' else 'Null')
chromaVS_state = gr.State({})
# Setup the Gradio Layout
gr.Markdown(mode.title)
with gr.Tabs() as tabs:
with gr.Tab('Initialization', id='init'):
with gr.Row():
with gr.Column():
aKey_tb = gr.Textbox(label="OpenAI API Key", type='password'\
, info='You can find OpenAI API key at https://platform.openai.com/account/api-keys'\
, placeholder='Enter your API key here and hit enter to begin chatting')
aKey_btn = gr.Button("Submit API Key")
with gr.Row(visible=mode.uiAddDataVis):
upload_fb = gr.Files(scale=5, label="Upload (multiple) Files - pdf/txt/docx supported", file_types=['.doc', '.docx', 'text', '.pdf', '.csv'])
urls_tb = gr.Textbox(scale=5, label="Enter URLs starting with https (comma separated)"\
, info=url_tb_info\
, placeholder=url_tb_ph)
data_ingest_btn = gr.Button("Load Data")
status_tb = gr.TextArea(label='Status bar', show_label=False, visible=mode.uiAddDataVis)
initChatbot_btn = gr.Button("Initialize Chatbot", variant="primary")
with gr.Tab('Chatbot', id='cb'):
with gr.Row():
chatbot = gr.Chatbot(label="Chat History", scale=2)
srcDocs = gr.TextArea(label="References")
msg = gr.Textbox(label="User Input",placeholder="Type your questions here")
with gr.Row():
btn = gr.Button("Send Message", interactive=False, variant="primary")
clear = gr.ClearButton(components=[msg, chatbot, srcDocs], value="Clear chat history")
# exp_comp = gr.Dataset(scale=0.7, samples=[['123'],['456'], ['123'],['456'],['456']], components=[msg], label='Examples (auto generated by LLM)', visible=False)
# gr.Examples(examples=exps, inputs=msg)
with gr.Accordion("Advance Settings - click to expand", open=False):
with gr.Row():
with gr.Column():
temp_sld = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", info='Sampling temperature to use when calling LLM. Defaults to 0.7')
k_sld = gr.Slider(minimum=1, maximum=10, step=1, value=mode.k, label="K", info='Number of relavant documents to return from Vector Store. Defaults to 4')
model_dd = gr.Dropdown(label='Model Name'\
, choices=model_dd_choices\
, value=model_dd_choices[0], allow_custom_value=True\
, info=model_dd_info)
stdlQs_rb = gr.Radio(label='Standalone Question', info=stdlQs_rb_info\
, type='index', value=stdlQs_rb_choices[1]\
, choices=stdlQs_rb_choices)
### Setup the Gradio Event Listeners
# API button
aKey_btn_args = {'fn':setApiKey, 'inputs':[aKey_tb], 'outputs':[aKey_tb, aKey_btn, api_key_state]}
aKey_btn.click(**aKey_btn_args)
aKey_tb.submit(**aKey_btn_args)
# Data Ingest Button
data_ingest_event = data_ingest_btn.click(uiData_vecStore, [upload_fb, urls_tb, api_key_state, chromaVS_state], [chromaVS_state, status_tb, data_ingest_btn, upload_fb, urls_tb])
# Adv Settings
advSet_args = {'fn':updateQaChain, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state]}
temp_sld.release(**advSet_args)
k_sld.release(**advSet_args)
model_dd.change(**advSet_args)
stdlQs_rb.change(**advSet_args)
# Initialize button
initCb_args = {'fn':initializeChatbot, 'inputs':[temp_sld, k_sld, model_dd, stdlQs_rb, api_key_state, chromaVS_state], 'outputs':[qa_state, btn, initChatbot_btn, aKey_tb, tabs, chatbot]}
if mode.type=='personalBot':
demo.load(**initCb_args) # load Chatbot UI directly on startup
initChatbot_btn.click(**initCb_args)
# Chatbot submit button
chat_btn_args = {'fn':respond, 'inputs':[msg, chatbot, qa_state], 'outputs':[msg, chatbot, srcDocs, btn]}
btn.click(**chat_btn_args)
msg.submit(**chat_btn_args)
demo.queue(concurrency_count=10)
demo.launch(show_error=True)