Spaces:
Sleeping
Sleeping
Update wav2vec_aligen.py
Browse files- wav2vec_aligen.py +12 -5
wav2vec_aligen.py
CHANGED
@@ -12,7 +12,7 @@ device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
12 |
torch.random.manual_seed(0);
|
13 |
# protobuf==3.20.0
|
14 |
|
15 |
-
model_name = "arslanarjumand/wav2vec-
|
16 |
processor = AutoFeatureExtractor.from_pretrained(model_name)
|
17 |
model = Wav2Vec2BertForSequenceClassification.from_pretrained(model_name).to(device)
|
18 |
# model = BetterTransformer.transform(model)
|
@@ -28,10 +28,17 @@ def get_emissions(input_values, model):
|
|
28 |
results = model(input_values,).logits[0]
|
29 |
return results
|
30 |
|
31 |
-
def
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def speaker_pronunciation_assesment(audio_path):
|
37 |
input_values = load_audio(audio_path, processor)
|
|
|
12 |
torch.random.manual_seed(0);
|
13 |
# protobuf==3.20.0
|
14 |
|
15 |
+
model_name = "arslanarjumand/wav2vec-read_aloud"
|
16 |
processor = AutoFeatureExtractor.from_pretrained(model_name)
|
17 |
model = Wav2Vec2BertForSequenceClassification.from_pretrained(model_name).to(device)
|
18 |
# model = BetterTransformer.transform(model)
|
|
|
28 |
results = model(input_values,).logits[0]
|
29 |
return results
|
30 |
|
31 |
+
def validate_range(value):
|
32 |
+
value = 10 + value * 80
|
33 |
+
if value > 90:
|
34 |
+
return 90
|
35 |
+
|
36 |
+
if value < 50 and value > 10:
|
37 |
+
value = value - 5
|
38 |
+
elif value < 10:
|
39 |
+
value = 10
|
40 |
+
else: None
|
41 |
+
return int(value)
|
42 |
|
43 |
def speaker_pronunciation_assesment(audio_path):
|
44 |
input_values = load_audio(audio_path, processor)
|