pixel-art-generator / image_processing.py
artificialguybr's picture
Update image_processing.py
6962b64
from PIL import Image
DITHER_METHODS = {
"None": Image.Dither.NONE,
"Floyd-Steinberg": Image.Dither.FLOYDSTEINBERG
}
QUANTIZATION_METHODS = {
"Median cut": Image.Quantize.MEDIANCUT,
"Maximum coverage": Image.Quantize.MAXCOVERAGE,
"Fast octree": Image.Quantize.FASTOCTREE,
"libimagequant": Image.Quantize.LIBIMAGEQUANT
}
def downscale_image(image: Image, scale: int) -> Image:
width, height = image.size
downscaled_image = image.resize((int(width / scale), int(height / scale)), Image.NEAREST)
return downscaled_image
def limit_colors(
image,
limit: int=16,
palette=None,
palette_colors: int=256,
quantize: Image.Quantize=Image.Quantize.MEDIANCUT,
dither: Image.Dither=Image.Dither.NONE,
use_k_means: bool=False
):
if use_k_means:
k_means_value = limit
else:
k_means_value = 0
if palette:
palette_image = palette
ppalette = palette.getcolors()
if ppalette:
color_palette = palette.quantize(colors=len(list(set(ppalette))))
else:
colors = len(palette_image.getcolors()) if palette_image.getcolors() else palette_colors
color_palette = palette_image.quantize(colors, kmeans=colors)
else:
# we need to get palette from image, because
# dither in quantize doesn't work without it
# https://pillow.readthedocs.io/en/stable/_modules/PIL/Image.html#Image.quantize
color_palette = image.quantize(colors=limit, kmeans=k_means_value, method=quantize, dither=Image.Dither.NONE)
new_image = image.quantize(palette=color_palette, dither=dither)
return new_image
def convert_to_grayscale(image):
new_image = image.convert("L")
return new_image.convert("RGB")
def convert_to_black_and_white(image: Image, threshold: int=128, is_inversed: bool=False):
if is_inversed:
apply_threshold = lambda x : 255 if x < threshold else 0
else:
apply_threshold = lambda x : 255 if x > threshold else 0
black_and_white_image = image.convert('L', dither=Image.Dither.NONE).point(apply_threshold, mode='1')
return black_and_white_image.convert("RGB")
def resize_image(image: Image, size) -> Image:
width, height = size
resized_image = image.resize((width, height), Image.NEAREST)
return resized_image