Lodor commited on
Commit
206ce41
·
1 Parent(s): a33c8f4

Initial commit

Browse files
.gitignore ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+
53
+ # Translations
54
+ *.mo
55
+ *.pot
56
+
57
+ # Django stuff:
58
+ *.log
59
+ local_settings.py
60
+ db.sqlite3
61
+ db.sqlite3-journal
62
+
63
+ # Flask stuff:
64
+ instance/
65
+ .webassets-cache
66
+
67
+ # Scrapy stuff:
68
+ .scrapy
69
+
70
+ # Sphinx documentation
71
+ docs/_build/
72
+
73
+ # PyBuilder
74
+ target/
75
+
76
+ # Jupyter Notebook
77
+ .ipynb_checkpoints
78
+
79
+ # IPython
80
+ profile_default/
81
+ ipython_config.py
82
+
83
+ # pyenv
84
+ .python-version
85
+
86
+ # pipenv
87
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
88
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
89
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
90
+ # install all needed dependencies.
91
+ #Pipfile.lock
92
+
93
+ # celery beat schedule file
94
+ celerybeat-schedule
95
+
96
+ # SageMath parsed files
97
+ *.sage.py
98
+
99
+ # Environments
100
+ .env
101
+ .venv
102
+ env/
103
+ venv/
104
+ ENV/
105
+ env.bak/
106
+ venv.bak/
107
+
108
+ # Spyder project settings
109
+ .spyderproject
110
+ .spyproject
111
+
112
+ # Rope project settings
113
+ .ropeproject
114
+
115
+ # mkdocs documentation
116
+ /site
117
+
118
+ # mypy
119
+ .mypy_cache/
120
+ .dmypy.json
121
+ dmypy.json
122
+
123
+ # Pyre type checker
124
+ .pyre/
.streamlit/config.toml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [server]
2
+ maxUploadSize = 10
3
+
4
+ [theme]
5
+ base="light"
6
+ primaryColor="#0074ff"
Dockerfile ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ FROM pytorch/pytorch:latest
2
+
3
+ WORKDIR /app
4
+
5
+ COPY . .
6
+
7
+ RUN pip install -r requirements.txt
8
+
9
+ CMD [ "streamlit", "run", "app.py" ]
README.md CHANGED
@@ -5,6 +5,7 @@ colorFrom: green
5
  colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.2.0
 
8
  app_file: app.py
9
  pinned: false
10
  ---
 
5
  colorTo: indigo
6
  sdk: streamlit
7
  sdk_version: 1.2.0
8
+ python_version: 3.9.5
9
  app_file: app.py
10
  pinned: false
11
  ---
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from datetime import datetime
4
+ from PIL import Image
5
+ from io import BytesIO
6
+
7
+ from src.utils import change_background, matte
8
+ from src.st_style import apply_prod_style
9
+
10
+ # apply_prod_style(st) # NOTE: Uncomment this for production!
11
+
12
+
13
+ def image_download_button(pil_image, filename: str, fmt: str, label="Download"):
14
+ if fmt not in ["jpg", "png"]:
15
+ raise Exception(f"Unknown image format (Available: {fmt} - case sensitive)")
16
+
17
+ pil_format = "JPEG" if fmt == "jpg" else "PNG"
18
+ file_format = "jpg" if fmt == "jpg" else "png"
19
+ mime = "image/jpeg" if fmt == "jpg" else "image/png"
20
+
21
+ buf = BytesIO()
22
+ pil_image.save(buf, format=pil_format)
23
+
24
+ return st.download_button(
25
+ label=label,
26
+ data=buf.getvalue(),
27
+ file_name=f'{filename}.{file_format}',
28
+ mime=mime,
29
+ )
30
+
31
+
32
+ st.title("AI Photo Background Removal")
33
+ st.image(Image.open("assets/demo.jpg"))
34
+ st.write(
35
+ """
36
+ You want to remove your photo background, but don't have the time and effort to learn photo editing skills?
37
+ **This app will change or remove your photo background, in seconds.**
38
+ """
39
+ )
40
+
41
+ uploaded_file = st.file_uploader(
42
+ label="Upload your photo here",
43
+ accept_multiple_files=False, type=["png", "jpg", "jpeg"],
44
+ )
45
+
46
+ if uploaded_file is not None:
47
+
48
+ with st.expander("Original photo", expanded=True):
49
+ if uploaded_file is not None:
50
+ st.image(uploaded_file)
51
+ else:
52
+ st.warning("You haven't uploaded any photo yet")
53
+
54
+ in_mode = st.selectbox("Choose background color", ["Transparent (PNG)", "White", "Black", "Green", "Red", "Blue"])
55
+ in_submit = st.button("Submit")
56
+
57
+ if uploaded_file is not None and in_submit:
58
+ img_input = Image.open(uploaded_file)
59
+
60
+ with st.spinner("AI is doing magic to your photo. Please wait..."):
61
+ hexmap = {
62
+ "Transparent (PNG)": "#000000",
63
+ "Black": "#000000",
64
+ "White": "#FFFFFF",
65
+ "Green": "#22EE22",
66
+ "Red": "#EE2222",
67
+ "Blue": "#2222EE",
68
+ }
69
+ alpha = 0.0 if in_mode == "Transparent (PNG)" else 1.0
70
+ img_matte = matte(img_input)
71
+ img_output = change_background(img_input, img_matte, background_alpha=alpha, background_hex=hexmap[in_mode])
72
+
73
+ with st.expander("Success!", expanded=True):
74
+ st.image(img_output)
75
+ uploaded_name = os.path.splitext(uploaded_file.name)[0]
76
+ image_download_button(
77
+ pil_image=img_output,
78
+ filename=uploaded_name,
79
+ fmt="png"
80
+ )
assets/demo.jpg ADDED
docker-compose.yml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ version: '3'
3
+ services:
4
+ st-remove-photo-background:
5
+ build: .
6
+ container_name: st-remove-photo-background
7
+ restart: unless-stopped
8
+ ports:
9
+ - 51001:8501
10
+ volumes:
11
+ - .:/app
12
+ environment:
13
+ - TZ=Asia/Jakarta
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ torchvision
3
+ numpy
4
+ opencv-python-headless
5
+ matplotlib
6
+ streamlit
src/__init__.py ADDED
File without changes
src/models/__init__.py ADDED
File without changes
src/models/backbones/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from .wrapper import *
2
+
3
+
4
+ #------------------------------------------------------------------------------
5
+ # Replaceable Backbones
6
+ #------------------------------------------------------------------------------
7
+
8
+ SUPPORTED_BACKBONES = {
9
+ 'mobilenetv2': MobileNetV2Backbone,
10
+ }
src/models/backbones/mobilenetv2.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ This file is adapted from https://github.com/thuyngch/Human-Segmentation-PyTorch"""
2
+
3
+ import math
4
+ import json
5
+ from functools import reduce
6
+
7
+ import torch
8
+ from torch import nn
9
+
10
+
11
+ #------------------------------------------------------------------------------
12
+ # Useful functions
13
+ #------------------------------------------------------------------------------
14
+
15
+ def _make_divisible(v, divisor, min_value=None):
16
+ if min_value is None:
17
+ min_value = divisor
18
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
19
+ # Make sure that round down does not go down by more than 10%.
20
+ if new_v < 0.9 * v:
21
+ new_v += divisor
22
+ return new_v
23
+
24
+
25
+ def conv_bn(inp, oup, stride):
26
+ return nn.Sequential(
27
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
28
+ nn.BatchNorm2d(oup),
29
+ nn.ReLU6(inplace=True)
30
+ )
31
+
32
+
33
+ def conv_1x1_bn(inp, oup):
34
+ return nn.Sequential(
35
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
36
+ nn.BatchNorm2d(oup),
37
+ nn.ReLU6(inplace=True)
38
+ )
39
+
40
+
41
+ #------------------------------------------------------------------------------
42
+ # Class of Inverted Residual block
43
+ #------------------------------------------------------------------------------
44
+
45
+ class InvertedResidual(nn.Module):
46
+ def __init__(self, inp, oup, stride, expansion, dilation=1):
47
+ super(InvertedResidual, self).__init__()
48
+ self.stride = stride
49
+ assert stride in [1, 2]
50
+
51
+ hidden_dim = round(inp * expansion)
52
+ self.use_res_connect = self.stride == 1 and inp == oup
53
+
54
+ if expansion == 1:
55
+ self.conv = nn.Sequential(
56
+ # dw
57
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
58
+ nn.BatchNorm2d(hidden_dim),
59
+ nn.ReLU6(inplace=True),
60
+ # pw-linear
61
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
62
+ nn.BatchNorm2d(oup),
63
+ )
64
+ else:
65
+ self.conv = nn.Sequential(
66
+ # pw
67
+ nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
68
+ nn.BatchNorm2d(hidden_dim),
69
+ nn.ReLU6(inplace=True),
70
+ # dw
71
+ nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, dilation=dilation, bias=False),
72
+ nn.BatchNorm2d(hidden_dim),
73
+ nn.ReLU6(inplace=True),
74
+ # pw-linear
75
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
76
+ nn.BatchNorm2d(oup),
77
+ )
78
+
79
+ def forward(self, x):
80
+ if self.use_res_connect:
81
+ return x + self.conv(x)
82
+ else:
83
+ return self.conv(x)
84
+
85
+
86
+ #------------------------------------------------------------------------------
87
+ # Class of MobileNetV2
88
+ #------------------------------------------------------------------------------
89
+
90
+ class MobileNetV2(nn.Module):
91
+ def __init__(self, in_channels, alpha=1.0, expansion=6, num_classes=1000):
92
+ super(MobileNetV2, self).__init__()
93
+ self.in_channels = in_channels
94
+ self.num_classes = num_classes
95
+ input_channel = 32
96
+ last_channel = 1280
97
+ interverted_residual_setting = [
98
+ # t, c, n, s
99
+ [1 , 16, 1, 1],
100
+ [expansion, 24, 2, 2],
101
+ [expansion, 32, 3, 2],
102
+ [expansion, 64, 4, 2],
103
+ [expansion, 96, 3, 1],
104
+ [expansion, 160, 3, 2],
105
+ [expansion, 320, 1, 1],
106
+ ]
107
+
108
+ # building first layer
109
+ input_channel = _make_divisible(input_channel*alpha, 8)
110
+ self.last_channel = _make_divisible(last_channel*alpha, 8) if alpha > 1.0 else last_channel
111
+ self.features = [conv_bn(self.in_channels, input_channel, 2)]
112
+
113
+ # building inverted residual blocks
114
+ for t, c, n, s in interverted_residual_setting:
115
+ output_channel = _make_divisible(int(c*alpha), 8)
116
+ for i in range(n):
117
+ if i == 0:
118
+ self.features.append(InvertedResidual(input_channel, output_channel, s, expansion=t))
119
+ else:
120
+ self.features.append(InvertedResidual(input_channel, output_channel, 1, expansion=t))
121
+ input_channel = output_channel
122
+
123
+ # building last several layers
124
+ self.features.append(conv_1x1_bn(input_channel, self.last_channel))
125
+
126
+ # make it nn.Sequential
127
+ self.features = nn.Sequential(*self.features)
128
+
129
+ # building classifier
130
+ if self.num_classes is not None:
131
+ self.classifier = nn.Sequential(
132
+ nn.Dropout(0.2),
133
+ nn.Linear(self.last_channel, num_classes),
134
+ )
135
+
136
+ # Initialize weights
137
+ self._init_weights()
138
+
139
+ def forward(self, x):
140
+ # Stage1
141
+ x = self.features[0](x)
142
+ x = self.features[1](x)
143
+ # Stage2
144
+ x = self.features[2](x)
145
+ x = self.features[3](x)
146
+ # Stage3
147
+ x = self.features[4](x)
148
+ x = self.features[5](x)
149
+ x = self.features[6](x)
150
+ # Stage4
151
+ x = self.features[7](x)
152
+ x = self.features[8](x)
153
+ x = self.features[9](x)
154
+ x = self.features[10](x)
155
+ x = self.features[11](x)
156
+ x = self.features[12](x)
157
+ x = self.features[13](x)
158
+ # Stage5
159
+ x = self.features[14](x)
160
+ x = self.features[15](x)
161
+ x = self.features[16](x)
162
+ x = self.features[17](x)
163
+ x = self.features[18](x)
164
+
165
+ # Classification
166
+ if self.num_classes is not None:
167
+ x = x.mean(dim=(2,3))
168
+ x = self.classifier(x)
169
+
170
+ # Output
171
+ return x
172
+
173
+ def _load_pretrained_model(self, pretrained_file):
174
+ pretrain_dict = torch.load(pretrained_file, map_location='cpu')
175
+ model_dict = {}
176
+ state_dict = self.state_dict()
177
+ print("[MobileNetV2] Loading pretrained model...")
178
+ for k, v in pretrain_dict.items():
179
+ if k in state_dict:
180
+ model_dict[k] = v
181
+ else:
182
+ print(k, "is ignored")
183
+ state_dict.update(model_dict)
184
+ self.load_state_dict(state_dict)
185
+
186
+ def _init_weights(self):
187
+ for m in self.modules():
188
+ if isinstance(m, nn.Conv2d):
189
+ n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
190
+ m.weight.data.normal_(0, math.sqrt(2. / n))
191
+ if m.bias is not None:
192
+ m.bias.data.zero_()
193
+ elif isinstance(m, nn.BatchNorm2d):
194
+ m.weight.data.fill_(1)
195
+ m.bias.data.zero_()
196
+ elif isinstance(m, nn.Linear):
197
+ n = m.weight.size(1)
198
+ m.weight.data.normal_(0, 0.01)
199
+ m.bias.data.zero_()
src/models/backbones/wrapper.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from functools import reduce
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from .mobilenetv2 import MobileNetV2
8
+
9
+
10
+ class BaseBackbone(nn.Module):
11
+ """ Superclass of Replaceable Backbone Model for Semantic Estimation
12
+ """
13
+
14
+ def __init__(self, in_channels):
15
+ super(BaseBackbone, self).__init__()
16
+ self.in_channels = in_channels
17
+
18
+ self.model = None
19
+ self.enc_channels = []
20
+
21
+ def forward(self, x):
22
+ raise NotImplementedError
23
+
24
+ def load_pretrained_ckpt(self):
25
+ raise NotImplementedError
26
+
27
+
28
+ class MobileNetV2Backbone(BaseBackbone):
29
+ """ MobileNetV2 Backbone
30
+ """
31
+
32
+ def __init__(self, in_channels):
33
+ super(MobileNetV2Backbone, self).__init__(in_channels)
34
+
35
+ self.model = MobileNetV2(self.in_channels, alpha=1.0, expansion=6, num_classes=None)
36
+ self.enc_channels = [16, 24, 32, 96, 1280]
37
+
38
+ def forward(self, x):
39
+ # x = reduce(lambda x, n: self.model.features[n](x), list(range(0, 2)), x)
40
+ x = self.model.features[0](x)
41
+ x = self.model.features[1](x)
42
+ enc2x = x
43
+
44
+ # x = reduce(lambda x, n: self.model.features[n](x), list(range(2, 4)), x)
45
+ x = self.model.features[2](x)
46
+ x = self.model.features[3](x)
47
+ enc4x = x
48
+
49
+ # x = reduce(lambda x, n: self.model.features[n](x), list(range(4, 7)), x)
50
+ x = self.model.features[4](x)
51
+ x = self.model.features[5](x)
52
+ x = self.model.features[6](x)
53
+ enc8x = x
54
+
55
+ # x = reduce(lambda x, n: self.model.features[n](x), list(range(7, 14)), x)
56
+ x = self.model.features[7](x)
57
+ x = self.model.features[8](x)
58
+ x = self.model.features[9](x)
59
+ x = self.model.features[10](x)
60
+ x = self.model.features[11](x)
61
+ x = self.model.features[12](x)
62
+ x = self.model.features[13](x)
63
+ enc16x = x
64
+
65
+ # x = reduce(lambda x, n: self.model.features[n](x), list(range(14, 19)), x)
66
+ x = self.model.features[14](x)
67
+ x = self.model.features[15](x)
68
+ x = self.model.features[16](x)
69
+ x = self.model.features[17](x)
70
+ x = self.model.features[18](x)
71
+ enc32x = x
72
+ return [enc2x, enc4x, enc8x, enc16x, enc32x]
73
+
74
+ def load_pretrained_ckpt(self):
75
+ # the pre-trained model is provided by https://github.com/thuyngch/Human-Segmentation-PyTorch
76
+ ckpt_path = './pretrained/mobilenetv2_human_seg.ckpt'
77
+ if not os.path.exists(ckpt_path):
78
+ print('cannot find the pretrained mobilenetv2 backbone')
79
+ exit()
80
+
81
+ ckpt = torch.load(ckpt_path)
82
+ self.model.load_state_dict(ckpt)
src/models/modnet.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .backbones import SUPPORTED_BACKBONES
6
+
7
+
8
+ #------------------------------------------------------------------------------
9
+ # MODNet Basic Modules
10
+ #------------------------------------------------------------------------------
11
+
12
+ class IBNorm(nn.Module):
13
+ """ Combine Instance Norm and Batch Norm into One Layer
14
+ """
15
+
16
+ def __init__(self, in_channels):
17
+ super(IBNorm, self).__init__()
18
+ in_channels = in_channels
19
+ self.bnorm_channels = int(in_channels / 2)
20
+ self.inorm_channels = in_channels - self.bnorm_channels
21
+
22
+ self.bnorm = nn.BatchNorm2d(self.bnorm_channels, affine=True)
23
+ self.inorm = nn.InstanceNorm2d(self.inorm_channels, affine=False)
24
+
25
+ def forward(self, x):
26
+ bn_x = self.bnorm(x[:, :self.bnorm_channels, ...].contiguous())
27
+ in_x = self.inorm(x[:, self.bnorm_channels:, ...].contiguous())
28
+
29
+ return torch.cat((bn_x, in_x), 1)
30
+
31
+
32
+ class Conv2dIBNormRelu(nn.Module):
33
+ """ Convolution + IBNorm + ReLu
34
+ """
35
+
36
+ def __init__(self, in_channels, out_channels, kernel_size,
37
+ stride=1, padding=0, dilation=1, groups=1, bias=True,
38
+ with_ibn=True, with_relu=True):
39
+ super(Conv2dIBNormRelu, self).__init__()
40
+
41
+ layers = [
42
+ nn.Conv2d(in_channels, out_channels, kernel_size,
43
+ stride=stride, padding=padding, dilation=dilation,
44
+ groups=groups, bias=bias)
45
+ ]
46
+
47
+ if with_ibn:
48
+ layers.append(IBNorm(out_channels))
49
+ if with_relu:
50
+ layers.append(nn.ReLU(inplace=True))
51
+
52
+ self.layers = nn.Sequential(*layers)
53
+
54
+ def forward(self, x):
55
+ return self.layers(x)
56
+
57
+
58
+ class SEBlock(nn.Module):
59
+ """ SE Block Proposed in https://arxiv.org/pdf/1709.01507.pdf
60
+ """
61
+
62
+ def __init__(self, in_channels, out_channels, reduction=1):
63
+ super(SEBlock, self).__init__()
64
+ self.pool = nn.AdaptiveAvgPool2d(1)
65
+ self.fc = nn.Sequential(
66
+ nn.Linear(in_channels, int(in_channels // reduction), bias=False),
67
+ nn.ReLU(inplace=True),
68
+ nn.Linear(int(in_channels // reduction), out_channels, bias=False),
69
+ nn.Sigmoid()
70
+ )
71
+
72
+ def forward(self, x):
73
+ b, c, _, _ = x.size()
74
+ w = self.pool(x).view(b, c)
75
+ w = self.fc(w).view(b, c, 1, 1)
76
+
77
+ return x * w.expand_as(x)
78
+
79
+
80
+ #------------------------------------------------------------------------------
81
+ # MODNet Branches
82
+ #------------------------------------------------------------------------------
83
+
84
+ class LRBranch(nn.Module):
85
+ """ Low Resolution Branch of MODNet
86
+ """
87
+
88
+ def __init__(self, backbone):
89
+ super(LRBranch, self).__init__()
90
+
91
+ enc_channels = backbone.enc_channels
92
+
93
+ self.backbone = backbone
94
+ self.se_block = SEBlock(enc_channels[4], enc_channels[4], reduction=4)
95
+ self.conv_lr16x = Conv2dIBNormRelu(enc_channels[4], enc_channels[3], 5, stride=1, padding=2)
96
+ self.conv_lr8x = Conv2dIBNormRelu(enc_channels[3], enc_channels[2], 5, stride=1, padding=2)
97
+ self.conv_lr = Conv2dIBNormRelu(enc_channels[2], 1, kernel_size=3, stride=2, padding=1, with_ibn=False, with_relu=False)
98
+
99
+ def forward(self, img, inference):
100
+ enc_features = self.backbone.forward(img)
101
+ enc2x, enc4x, enc32x = enc_features[0], enc_features[1], enc_features[4]
102
+
103
+ enc32x = self.se_block(enc32x)
104
+ lr16x = F.interpolate(enc32x, scale_factor=2, mode='bilinear', align_corners=False)
105
+ lr16x = self.conv_lr16x(lr16x)
106
+ lr8x = F.interpolate(lr16x, scale_factor=2, mode='bilinear', align_corners=False)
107
+ lr8x = self.conv_lr8x(lr8x)
108
+
109
+ pred_semantic = None
110
+ if not inference:
111
+ lr = self.conv_lr(lr8x)
112
+ pred_semantic = torch.sigmoid(lr)
113
+
114
+ return pred_semantic, lr8x, [enc2x, enc4x]
115
+
116
+
117
+ class HRBranch(nn.Module):
118
+ """ High Resolution Branch of MODNet
119
+ """
120
+
121
+ def __init__(self, hr_channels, enc_channels):
122
+ super(HRBranch, self).__init__()
123
+
124
+ self.tohr_enc2x = Conv2dIBNormRelu(enc_channels[0], hr_channels, 1, stride=1, padding=0)
125
+ self.conv_enc2x = Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=2, padding=1)
126
+
127
+ self.tohr_enc4x = Conv2dIBNormRelu(enc_channels[1], hr_channels, 1, stride=1, padding=0)
128
+ self.conv_enc4x = Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1)
129
+
130
+ self.conv_hr4x = nn.Sequential(
131
+ Conv2dIBNormRelu(3 * hr_channels + 3, 2 * hr_channels, 3, stride=1, padding=1),
132
+ Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
133
+ Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
134
+ )
135
+
136
+ self.conv_hr2x = nn.Sequential(
137
+ Conv2dIBNormRelu(2 * hr_channels, 2 * hr_channels, 3, stride=1, padding=1),
138
+ Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1),
139
+ Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
140
+ Conv2dIBNormRelu(hr_channels, hr_channels, 3, stride=1, padding=1),
141
+ )
142
+
143
+ self.conv_hr = nn.Sequential(
144
+ Conv2dIBNormRelu(hr_channels + 3, hr_channels, 3, stride=1, padding=1),
145
+ Conv2dIBNormRelu(hr_channels, 1, kernel_size=1, stride=1, padding=0, with_ibn=False, with_relu=False),
146
+ )
147
+
148
+ def forward(self, img, enc2x, enc4x, lr8x, inference):
149
+ img2x = F.interpolate(img, scale_factor=1/2, mode='bilinear', align_corners=False)
150
+ img4x = F.interpolate(img, scale_factor=1/4, mode='bilinear', align_corners=False)
151
+
152
+ enc2x = self.tohr_enc2x(enc2x)
153
+ hr4x = self.conv_enc2x(torch.cat((img2x, enc2x), dim=1))
154
+
155
+ enc4x = self.tohr_enc4x(enc4x)
156
+ hr4x = self.conv_enc4x(torch.cat((hr4x, enc4x), dim=1))
157
+
158
+ lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
159
+ hr4x = self.conv_hr4x(torch.cat((hr4x, lr4x, img4x), dim=1))
160
+
161
+ hr2x = F.interpolate(hr4x, scale_factor=2, mode='bilinear', align_corners=False)
162
+ hr2x = self.conv_hr2x(torch.cat((hr2x, enc2x), dim=1))
163
+
164
+ pred_detail = None
165
+ if not inference:
166
+ hr = F.interpolate(hr2x, scale_factor=2, mode='bilinear', align_corners=False)
167
+ hr = self.conv_hr(torch.cat((hr, img), dim=1))
168
+ pred_detail = torch.sigmoid(hr)
169
+
170
+ return pred_detail, hr2x
171
+
172
+
173
+ class FusionBranch(nn.Module):
174
+ """ Fusion Branch of MODNet
175
+ """
176
+
177
+ def __init__(self, hr_channels, enc_channels):
178
+ super(FusionBranch, self).__init__()
179
+ self.conv_lr4x = Conv2dIBNormRelu(enc_channels[2], hr_channels, 5, stride=1, padding=2)
180
+
181
+ self.conv_f2x = Conv2dIBNormRelu(2 * hr_channels, hr_channels, 3, stride=1, padding=1)
182
+ self.conv_f = nn.Sequential(
183
+ Conv2dIBNormRelu(hr_channels + 3, int(hr_channels / 2), 3, stride=1, padding=1),
184
+ Conv2dIBNormRelu(int(hr_channels / 2), 1, 1, stride=1, padding=0, with_ibn=False, with_relu=False),
185
+ )
186
+
187
+ def forward(self, img, lr8x, hr2x):
188
+ lr4x = F.interpolate(lr8x, scale_factor=2, mode='bilinear', align_corners=False)
189
+ lr4x = self.conv_lr4x(lr4x)
190
+ lr2x = F.interpolate(lr4x, scale_factor=2, mode='bilinear', align_corners=False)
191
+
192
+ f2x = self.conv_f2x(torch.cat((lr2x, hr2x), dim=1))
193
+ f = F.interpolate(f2x, scale_factor=2, mode='bilinear', align_corners=False)
194
+ f = self.conv_f(torch.cat((f, img), dim=1))
195
+ pred_matte = torch.sigmoid(f)
196
+
197
+ return pred_matte
198
+
199
+
200
+ #------------------------------------------------------------------------------
201
+ # MODNet
202
+ #------------------------------------------------------------------------------
203
+
204
+ class MODNet(nn.Module):
205
+ """ Architecture of MODNet
206
+ """
207
+
208
+ def __init__(self, in_channels=3, hr_channels=32, backbone_arch='mobilenetv2', backbone_pretrained=True):
209
+ super(MODNet, self).__init__()
210
+
211
+ self.in_channels = in_channels
212
+ self.hr_channels = hr_channels
213
+ self.backbone_arch = backbone_arch
214
+ self.backbone_pretrained = backbone_pretrained
215
+
216
+ self.backbone = SUPPORTED_BACKBONES[self.backbone_arch](self.in_channels)
217
+
218
+ self.lr_branch = LRBranch(self.backbone)
219
+ self.hr_branch = HRBranch(self.hr_channels, self.backbone.enc_channels)
220
+ self.f_branch = FusionBranch(self.hr_channels, self.backbone.enc_channels)
221
+
222
+ for m in self.modules():
223
+ if isinstance(m, nn.Conv2d):
224
+ self._init_conv(m)
225
+ elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.InstanceNorm2d):
226
+ self._init_norm(m)
227
+
228
+ if self.backbone_pretrained:
229
+ self.backbone.load_pretrained_ckpt()
230
+
231
+ def forward(self, img, inference):
232
+ pred_semantic, lr8x, [enc2x, enc4x] = self.lr_branch(img, inference)
233
+ pred_detail, hr2x = self.hr_branch(img, enc2x, enc4x, lr8x, inference)
234
+ pred_matte = self.f_branch(img, lr8x, hr2x)
235
+
236
+ return pred_semantic, pred_detail, pred_matte
237
+
238
+ def freeze_norm(self):
239
+ norm_types = [nn.BatchNorm2d, nn.InstanceNorm2d]
240
+ for m in self.modules():
241
+ for n in norm_types:
242
+ if isinstance(m, n):
243
+ m.eval()
244
+ continue
245
+
246
+ def _init_conv(self, conv):
247
+ nn.init.kaiming_uniform_(
248
+ conv.weight, a=0, mode='fan_in', nonlinearity='relu')
249
+ if conv.bias is not None:
250
+ nn.init.constant_(conv.bias, 0)
251
+
252
+ def _init_norm(self, norm):
253
+ if norm.weight is not None:
254
+ nn.init.constant_(norm.weight, 1)
255
+ nn.init.constant_(norm.bias, 0)
src/st_style.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ button_style = """
2
+ <style>
3
+ div.stButton > button:first-child {
4
+ background-color: rgb(255, 75, 75);
5
+ color: rgb(255, 255, 255);
6
+ }
7
+ div.stButton > button:hover {
8
+ background-color: rgb(255, 75, 75);
9
+ color: rgb(255, 255, 255);
10
+ }
11
+ div.stButton > button:active {
12
+ background-color: rgb(255, 75, 75);
13
+ color: rgb(255, 255, 255);
14
+ }
15
+ div.stButton > button:focus {
16
+ background-color: rgb(255, 75, 75);
17
+ color: rgb(255, 255, 255);
18
+ }
19
+ .css-1cpxqw2:focus:not(:active) {
20
+ background-color: rgb(255, 75, 75);
21
+ border-color: rgb(255, 75, 75);
22
+ color: rgb(255, 255, 255);
23
+ }
24
+ """
25
+
26
+ style = """
27
+ <style>
28
+ #MainMenu {
29
+ visibility: hidden;
30
+ }
31
+ footer {
32
+ visibility: hidden;
33
+ }
34
+ header {
35
+ visibility: hidden;
36
+ }
37
+ </style>
38
+ """
39
+
40
+
41
+ def apply_prod_style(st):
42
+ return st.markdown(style, unsafe_allow_html=True)
src/trainer.py ADDED
@@ -0,0 +1,299 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import scipy
3
+ import numpy as np
4
+ from scipy.ndimage import grey_dilation, grey_erosion
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+
11
+ __all__ = [
12
+ 'supervised_training_iter',
13
+ 'soc_adaptation_iter',
14
+ ]
15
+
16
+
17
+ # ----------------------------------------------------------------------------------
18
+ # Tool Classes/Functions
19
+ # ----------------------------------------------------------------------------------
20
+
21
+ class GaussianBlurLayer(nn.Module):
22
+ """ Add Gaussian Blur to a 4D tensors
23
+ This layer takes a 4D tensor of {N, C, H, W} as input.
24
+ The Gaussian blur will be performed in given channel number (C) splitly.
25
+ """
26
+
27
+ def __init__(self, channels, kernel_size):
28
+ """
29
+ Arguments:
30
+ channels (int): Channel for input tensor
31
+ kernel_size (int): Size of the kernel used in blurring
32
+ """
33
+
34
+ super(GaussianBlurLayer, self).__init__()
35
+ self.channels = channels
36
+ self.kernel_size = kernel_size
37
+ assert self.kernel_size % 2 != 0
38
+
39
+ self.op = nn.Sequential(
40
+ nn.ReflectionPad2d(math.floor(self.kernel_size / 2)),
41
+ nn.Conv2d(channels, channels, self.kernel_size,
42
+ stride=1, padding=0, bias=None, groups=channels)
43
+ )
44
+
45
+ self._init_kernel()
46
+
47
+ def forward(self, x):
48
+ """
49
+ Arguments:
50
+ x (torch.Tensor): input 4D tensor
51
+ Returns:
52
+ torch.Tensor: Blurred version of the input
53
+ """
54
+
55
+ if not len(list(x.shape)) == 4:
56
+ print('\'GaussianBlurLayer\' requires a 4D tensor as input\n')
57
+ exit()
58
+ elif not x.shape[1] == self.channels:
59
+ print('In \'GaussianBlurLayer\', the required channel ({0}) is'
60
+ 'not the same as input ({1})\n'.format(self.channels, x.shape[1]))
61
+ exit()
62
+
63
+ return self.op(x)
64
+
65
+ def _init_kernel(self):
66
+ sigma = 0.3 * ((self.kernel_size - 1) * 0.5 - 1) + 0.8
67
+
68
+ n = np.zeros((self.kernel_size, self.kernel_size))
69
+ i = math.floor(self.kernel_size / 2)
70
+ n[i, i] = 1
71
+ kernel = scipy.ndimage.gaussian_filter(n, sigma)
72
+
73
+ for name, param in self.named_parameters():
74
+ param.data.copy_(torch.from_numpy(kernel))
75
+
76
+ # ----------------------------------------------------------------------------------
77
+
78
+
79
+ # ----------------------------------------------------------------------------------
80
+ # MODNet Training Functions
81
+ # ----------------------------------------------------------------------------------
82
+
83
+ blurer = GaussianBlurLayer(1, 3).cuda()
84
+
85
+
86
+ def supervised_training_iter(
87
+ modnet, optimizer, image, trimap, gt_matte,
88
+ semantic_scale=10.0, detail_scale=10.0, matte_scale=1.0):
89
+ """ Supervised training iteration of MODNet
90
+ This function trains MODNet for one iteration in a labeled dataset.
91
+
92
+ Arguments:
93
+ modnet (torch.nn.Module): instance of MODNet
94
+ optimizer (torch.optim.Optimizer): optimizer for supervised training
95
+ image (torch.autograd.Variable): input RGB image
96
+ its pixel values should be normalized
97
+ trimap (torch.autograd.Variable): trimap used to calculate the losses
98
+ its pixel values can be 0, 0.5, or 1
99
+ (foreground=1, background=0, unknown=0.5)
100
+ gt_matte (torch.autograd.Variable): ground truth alpha matte
101
+ its pixel values are between [0, 1]
102
+ semantic_scale (float): scale of the semantic loss
103
+ NOTE: please adjust according to your dataset
104
+ detail_scale (float): scale of the detail loss
105
+ NOTE: please adjust according to your dataset
106
+ matte_scale (float): scale of the matte loss
107
+ NOTE: please adjust according to your dataset
108
+
109
+ Returns:
110
+ semantic_loss (torch.Tensor): loss of the semantic estimation [Low-Resolution (LR) Branch]
111
+ detail_loss (torch.Tensor): loss of the detail prediction [High-Resolution (HR) Branch]
112
+ matte_loss (torch.Tensor): loss of the semantic-detail fusion [Fusion Branch]
113
+
114
+ Example:
115
+ import torch
116
+ from src.models.modnet import MODNet
117
+ from src.trainer import supervised_training_iter
118
+
119
+ bs = 16 # batch size
120
+ lr = 0.01 # learn rate
121
+ epochs = 40 # total epochs
122
+
123
+ modnet = torch.nn.DataParallel(MODNet()).cuda()
124
+ optimizer = torch.optim.SGD(modnet.parameters(), lr=lr, momentum=0.9)
125
+ lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=int(0.25 * epochs), gamma=0.1)
126
+
127
+ dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
128
+
129
+ for epoch in range(0, epochs):
130
+ for idx, (image, trimap, gt_matte) in enumerate(dataloader):
131
+ semantic_loss, detail_loss, matte_loss = \
132
+ supervised_training_iter(modnet, optimizer, image, trimap, gt_matte)
133
+ lr_scheduler.step()
134
+ """
135
+
136
+ global blurer
137
+
138
+ # set the model to train mode and clear the optimizer
139
+ modnet.train()
140
+ optimizer.zero_grad()
141
+
142
+ # forward the model
143
+ pred_semantic, pred_detail, pred_matte = modnet(image, False)
144
+
145
+ # calculate the boundary mask from the trimap
146
+ boundaries = (trimap < 0.5) + (trimap > 0.5)
147
+
148
+ # calculate the semantic loss
149
+ gt_semantic = F.interpolate(gt_matte, scale_factor=1/16, mode='bilinear')
150
+ gt_semantic = blurer(gt_semantic)
151
+ semantic_loss = torch.mean(F.mse_loss(pred_semantic, gt_semantic))
152
+ semantic_loss = semantic_scale * semantic_loss
153
+
154
+ # calculate the detail loss
155
+ pred_boundary_detail = torch.where(boundaries, trimap, pred_detail)
156
+ gt_detail = torch.where(boundaries, trimap, gt_matte)
157
+ detail_loss = torch.mean(F.l1_loss(pred_boundary_detail, gt_detail))
158
+ detail_loss = detail_scale * detail_loss
159
+
160
+ # calculate the matte loss
161
+ pred_boundary_matte = torch.where(boundaries, trimap, pred_matte)
162
+ matte_l1_loss = F.l1_loss(pred_matte, gt_matte) + 4.0 * F.l1_loss(pred_boundary_matte, gt_matte)
163
+ matte_compositional_loss = F.l1_loss(image * pred_matte, image * gt_matte) \
164
+ + 4.0 * F.l1_loss(image * pred_boundary_matte, image * gt_matte)
165
+ matte_loss = torch.mean(matte_l1_loss + matte_compositional_loss)
166
+ matte_loss = matte_scale * matte_loss
167
+
168
+ # calculate the final loss, backward the loss, and update the model
169
+ loss = semantic_loss + detail_loss + matte_loss
170
+ loss.backward()
171
+ optimizer.step()
172
+
173
+ # for test
174
+ return semantic_loss, detail_loss, matte_loss
175
+
176
+
177
+ def soc_adaptation_iter(
178
+ modnet, backup_modnet, optimizer, image,
179
+ soc_semantic_scale=100.0, soc_detail_scale=1.0):
180
+ """ Self-Supervised sub-objective consistency (SOC) adaptation iteration of MODNet
181
+ This function fine-tunes MODNet for one iteration in an unlabeled dataset.
182
+ Note that SOC can only fine-tune a converged MODNet, i.e., MODNet that has been
183
+ trained in a labeled dataset.
184
+
185
+ Arguments:
186
+ modnet (torch.nn.Module): instance of MODNet
187
+ backup_modnet (torch.nn.Module): backup of the trained MODNet
188
+ optimizer (torch.optim.Optimizer): optimizer for self-supervised SOC
189
+ image (torch.autograd.Variable): input RGB image
190
+ its pixel values should be normalized
191
+ soc_semantic_scale (float): scale of the SOC semantic loss
192
+ NOTE: please adjust according to your dataset
193
+ soc_detail_scale (float): scale of the SOC detail loss
194
+ NOTE: please adjust according to your dataset
195
+
196
+ Returns:
197
+ soc_semantic_loss (torch.Tensor): loss of the semantic SOC
198
+ soc_detail_loss (torch.Tensor): loss of the detail SOC
199
+
200
+ Example:
201
+ import copy
202
+ import torch
203
+ from src.models.modnet import MODNet
204
+ from src.trainer import soc_adaptation_iter
205
+
206
+ bs = 1 # batch size
207
+ lr = 0.00001 # learn rate
208
+ epochs = 10 # total epochs
209
+
210
+ modnet = torch.nn.DataParallel(MODNet()).cuda()
211
+ modnet = LOAD_TRAINED_CKPT() # NOTE: please finish this function
212
+
213
+ optimizer = torch.optim.Adam(modnet.parameters(), lr=lr, betas=(0.9, 0.99))
214
+ dataloader = CREATE_YOUR_DATALOADER(bs) # NOTE: please finish this function
215
+
216
+ for epoch in range(0, epochs):
217
+ backup_modnet = copy.deepcopy(modnet)
218
+ for idx, (image) in enumerate(dataloader):
219
+ soc_semantic_loss, soc_detail_loss = \
220
+ soc_adaptation_iter(modnet, backup_modnet, optimizer, image)
221
+ """
222
+
223
+ global blurer
224
+
225
+ # set the backup model to eval mode
226
+ backup_modnet.eval()
227
+
228
+ # set the main model to train mode and freeze its norm layers
229
+ modnet.train()
230
+ modnet.module.freeze_norm()
231
+
232
+ # clear the optimizer
233
+ optimizer.zero_grad()
234
+
235
+ # forward the main model
236
+ pred_semantic, pred_detail, pred_matte = modnet(image, False)
237
+
238
+ # forward the backup model
239
+ with torch.no_grad():
240
+ _, pred_backup_detail, pred_backup_matte = backup_modnet(image, False)
241
+
242
+ # calculate the boundary mask from `pred_matte` and `pred_semantic`
243
+ pred_matte_fg = (pred_matte.detach() > 0.1).float()
244
+ pred_semantic_fg = (pred_semantic.detach() > 0.1).float()
245
+ pred_semantic_fg = F.interpolate(pred_semantic_fg, scale_factor=16, mode='bilinear')
246
+ pred_fg = pred_matte_fg * pred_semantic_fg
247
+
248
+ n, c, h, w = pred_matte.shape
249
+ np_pred_fg = pred_fg.data.cpu().numpy()
250
+ np_boundaries = np.zeros([n, c, h, w])
251
+ for sdx in range(0, n):
252
+ sample_np_boundaries = np_boundaries[sdx, 0, ...]
253
+ sample_np_pred_fg = np_pred_fg[sdx, 0, ...]
254
+
255
+ side = int((h + w) / 2 * 0.05)
256
+ dilated = grey_dilation(sample_np_pred_fg, size=(side, side))
257
+ eroded = grey_erosion(sample_np_pred_fg, size=(side, side))
258
+
259
+ sample_np_boundaries[np.where(dilated - eroded != 0)] = 1
260
+ np_boundaries[sdx, 0, ...] = sample_np_boundaries
261
+
262
+ boundaries = torch.tensor(np_boundaries).float().cuda()
263
+
264
+ # sub-objectives consistency between `pred_semantic` and `pred_matte`
265
+ # generate pseudo ground truth for `pred_semantic`
266
+ downsampled_pred_matte = blurer(F.interpolate(pred_matte, scale_factor=1/16, mode='bilinear'))
267
+ pseudo_gt_semantic = downsampled_pred_matte.detach()
268
+ pseudo_gt_semantic = pseudo_gt_semantic * (pseudo_gt_semantic > 0.01).float()
269
+
270
+ # generate pseudo ground truth for `pred_matte`
271
+ pseudo_gt_matte = pred_semantic.detach()
272
+ pseudo_gt_matte = pseudo_gt_matte * (pseudo_gt_matte > 0.01).float()
273
+
274
+ # calculate the SOC semantic loss
275
+ soc_semantic_loss = F.mse_loss(pred_semantic, pseudo_gt_semantic) + F.mse_loss(downsampled_pred_matte, pseudo_gt_matte)
276
+ soc_semantic_loss = soc_semantic_scale * torch.mean(soc_semantic_loss)
277
+
278
+ # NOTE: using the formulas in our paper to calculate the following losses has similar results
279
+ # sub-objectives consistency between `pred_detail` and `pred_backup_detail` (on boundaries only)
280
+ backup_detail_loss = boundaries * F.l1_loss(pred_detail, pred_backup_detail, reduction='none')
281
+ backup_detail_loss = torch.sum(backup_detail_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
282
+ backup_detail_loss = torch.mean(backup_detail_loss)
283
+
284
+ # sub-objectives consistency between pred_matte` and `pred_backup_matte` (on boundaries only)
285
+ backup_matte_loss = boundaries * F.l1_loss(pred_matte, pred_backup_matte, reduction='none')
286
+ backup_matte_loss = torch.sum(backup_matte_loss, dim=(1,2,3)) / torch.sum(boundaries, dim=(1,2,3))
287
+ backup_matte_loss = torch.mean(backup_matte_loss)
288
+
289
+ soc_detail_loss = soc_detail_scale * (backup_detail_loss + backup_matte_loss)
290
+
291
+ # calculate the final loss, backward the loss, and update the model
292
+ loss = soc_semantic_loss + soc_detail_loss
293
+
294
+ loss.backward()
295
+ optimizer.step()
296
+
297
+ return soc_semantic_loss, soc_detail_loss
298
+
299
+ # ----------------------------------------------------------------------------------
src/utils.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Credits to https://github.com/ZHKKKe/MODNet for the model.
2
+ import streamlit as st
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import time
6
+ import os
7
+ from PIL import Image, ImageColor
8
+ from copy import deepcopy
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ import torchvision.transforms as transforms
14
+
15
+ from src.models.modnet import MODNet
16
+ from src.st_style import apply_prod_style
17
+
18
+ # apply(st)
19
+
20
+ MODEL = "./assets/modnet_photographic_portrait_matting.ckpt"
21
+
22
+
23
+ def change_background(image, matte, background_alpha: float=1.0, background_hex: str="#000000"):
24
+ """
25
+ image: PIL Image (RGBA)
26
+ matte: PIL Image (grayscale, if 255 it is foreground)
27
+ background_alpha: float
28
+ background_hex: string
29
+ """
30
+ img = deepcopy(image)
31
+ if image.mode != "RGBA":
32
+ img = img.convert("RGBA")
33
+
34
+ background_color = ImageColor.getrgb(background_hex)
35
+ background_alpha = int(255 * background_alpha)
36
+ background = Image.new("RGBA", img.size, color=background_color + (background_alpha,))
37
+ background.paste(img, mask=matte)
38
+ return background
39
+
40
+
41
+ def matte(image):
42
+ # define hyper-parameters
43
+ ref_size = 512
44
+
45
+ # define image to tensor transform
46
+ im_transform = transforms.Compose(
47
+ [
48
+ transforms.ToTensor(),
49
+ transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
50
+ ]
51
+ )
52
+
53
+ # create MODNet and load the pre-trained ckpt
54
+ modnet = MODNet(backbone_pretrained=False)
55
+ modnet = nn.DataParallel(modnet)
56
+
57
+ if torch.cuda.is_available():
58
+ modnet = modnet.cuda()
59
+ weights = torch.load(MODEL)
60
+ else:
61
+ weights = torch.load(MODEL, map_location=torch.device('cpu'))
62
+ modnet.load_state_dict(weights)
63
+ modnet.eval()
64
+
65
+ # read image
66
+ im = deepcopy(image)
67
+
68
+ # unify image channels to 3
69
+ im = np.asarray(im)
70
+ if len(im.shape) == 2:
71
+ im = im[:, :, None]
72
+ if im.shape[2] == 1:
73
+ im = np.repeat(im, 3, axis=2)
74
+ elif im.shape[2] == 4:
75
+ im = im[:, :, 0:3]
76
+
77
+ # convert image to PyTorch tensor
78
+ im = Image.fromarray(im)
79
+ im = im_transform(im)
80
+
81
+ # add mini-batch dim
82
+ im = im[None, :, :, :]
83
+
84
+ # resize image for input
85
+ im_b, im_c, im_h, im_w = im.shape
86
+ if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size:
87
+ if im_w >= im_h:
88
+ im_rh = ref_size
89
+ im_rw = int(im_w / im_h * ref_size)
90
+ elif im_w < im_h:
91
+ im_rw = ref_size
92
+ im_rh = int(im_h / im_w * ref_size)
93
+ else:
94
+ im_rh = im_h
95
+ im_rw = im_w
96
+
97
+ im_rw = im_rw - im_rw % 32
98
+ im_rh = im_rh - im_rh % 32
99
+ im = F.interpolate(im, size=(im_rh, im_rw), mode='area')
100
+
101
+ # inference
102
+ _, _, matte = modnet(im.cuda() if torch.cuda.is_available() else im, True)
103
+
104
+ # resize and save matte
105
+ matte = F.interpolate(matte, size=(im_h, im_w), mode='area')
106
+ matte = matte[0][0].data.cpu().numpy()
107
+ return Image.fromarray(((matte * 255).astype('uint8')), mode='L')