File size: 6,712 Bytes
626e10d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b750d5
 
 
 
626e10d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b750d5
626e10d
 
 
 
 
 
 
 
 
 
124a77f
6b750d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from qdrant_client import QdrantClient, models
from sentence_transformers import SentenceTransformer 
from transformers import AutoModel, AutoImageProcessor
import torch
import os
from datasets import load_dataset
from dotenv import load_dotenv
import numpy as np
import uuid
from PIL import Image, ImageFile
from fastembed import SparseTextEmbedding
import cohere

load_dotenv()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
encoder = SentenceTransformer("sentence-transformers/LaBSE").to(device)
processor = AutoImageProcessor.from_pretrained('facebook/dinov2-large')
image_encoder = AutoModel.from_pretrained("facebook/dinov2-large").to(device)
qdrant_client = QdrantClient(url=os.getenv("qdrant_url"), api_key=os.getenv("qdrant_api_key"))
sparse_encoder = SparseTextEmbedding(model_name="prithivida/Splade_PP_en_v1")
co = cohere.ClientV2(os.getenv("cohere_api_key"))

dataset = load_dataset("Karbo31881/Pokemon_images")
ds = dataset["train"]
labels = ds["text"]

def get_sparse_embedding(text: str, model: SparseTextEmbedding):
    embeddings = list(model.embed(text))
    vector = {f"sparse-text": models.SparseVector(indices=embeddings[0].indices, values=embeddings[0].values)}
    return vector

def get_query_sparse_embedding(text: str, model: SparseTextEmbedding):
    embeddings = list(model.embed(text))
    query_vector = models.NamedSparseVector(
        name="sparse-text",
        vector=models.SparseVector(
            indices=embeddings[0].indices,
            values=embeddings[0].values,
        ),
    )
    return query_vector

def upload_text_to_qdrant(client: QdrantClient, collection_name: str, encoder: SentenceTransformer, text: str, point_id_dense: int, point_id_sparse: int):
    try:
        docs = {"text": text}
        client.upsert(
            collection_name=collection_name,
            points=[
                models.PointStruct(
                    id=point_id_dense,
                    vector={f"dense-text": encoder.encode(docs["text"]).tolist()},
                    payload=docs,
                )
            ],
        )
        client.upsert(
            collection_name=collection_name,
            points=[
                models.PointStruct(
                    id=point_id_sparse,
                    vector=get_sparse_embedding(docs["text"], sparse_encoder),
                    payload=docs,
                )
            ],
        )
        return True
    except Exception as e:
        return False
    
def upload_images_to_qdrant(client: QdrantClient, collection_name: str, vectorsfile: str, labelslist: list):
    try:
        vectors = np.load(vectorsfile)
        docs = []
        for label in labelslist:
            docs.append({"label": label})
        client.upload_points(
            collection_name=collection_name,
            points=[
                models.PointStruct(
                    id=idx,
                    vector=vectors[idx].tolist(),
                    payload=doc,
                )
                for idx, doc in enumerate(docs)
            ],
        )
        return True
    except Exception as e:
        return False

class SemanticCache:
    def __init__(self, client: QdrantClient, text_encoder: SentenceTransformer, collection_name: str, threshold: float = 0.75):
        self.client = client
        self.text_encoder = text_encoder
        self.collection_name = collection_name
        self.threshold = threshold
    def upload_to_cache(self, question: str, answer: str):
        docs = {"question": question, "answer": answer}
        point_id = str(uuid.uuid4())
        self.client.upsert(
            collection_name=self.collection_name,
            points=[
                models.PointStruct(
                    id=point_id,
                    vector=self.text_encoder.encode(docs["question"]).tolist(),
                    payload=docs,
                )
            ],
        )
    def search_cache(self, question: str, limit: int = 5):
        vector = self.text_encoder.encode(question).tolist()
        search_result = self.client.search(
            collection_name=self.collection_name,
            query_vector=vector,
            query_filter=None,
            limit=limit,
        )
        payloads = [hit.payload["answer"] for hit in search_result if hit.score > self.threshold]
        if len(payloads) > 0:
            return payloads[0]
        else:
            return ""


class NeuralSearcher:
    def __init__(self, text_collection_name: str, image_collection_name: str, client: QdrantClient, text_encoder: SentenceTransformer , image_encoder: AutoModel, image_processor: AutoImageProcessor, sparse_encoder: SparseTextEmbedding):
        self.text_collection_name = text_collection_name
        self.image_collection_name = image_collection_name
        self.text_encoder = text_encoder
        self.image_encoder = image_encoder
        self.image_processor = image_processor
        self.qdrant_client = client
        self.sparse_encoder = sparse_encoder

    def search_text(self, text: str, limit: int = 5):
        vector = self.text_encoder.encode(text).tolist()

        search_result_dense = self.qdrant_client.search(
            collection_name=self.text_collection_name,
            query_vector=models.NamedVector(name="dense-text", vector=vector),
            query_filter=None,
            limit=limit,
        )

        search_result_sparse = self.qdrant_client.search(
            collection_name=self.text_collection_name,
            query_vector=get_query_sparse_embedding(text, self.sparse_encoder),
            query_filter=None,
            limit=limit,
        )
        payloads = [hit.payload["text"] for hit in search_result_dense]
        payloads += [hit.payload["text"] for hit in search_result_sparse]
        return payloads
    def reranking(self, text: str, search_result: list):
        results = co.rerank(model="rerank-v3.5", query=text, documents=search_result, top_n = 3)
        ranked_results = [search_result[results.results[i].index] for i in range(3)]
        return ranked_results
    def search_image(self, image: ImageFile, limit: int = 5):
        img = image
        inputs = self.image_processor(images=img, return_tensors="pt").to(device)
        with torch.no_grad():
            outputs = self.image_encoder(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
        search_result = self.qdrant_client.search(
            collection_name=self.image_collection_name,
            query_vector=outputs[0].tolist(),
            query_filter=None,
            limit=limit,
        )
        payloads = [f"- {hit.payload['label']} with score {hit.score}" for hit in search_result]
        return payloads