as-cle-bert commited on
Commit
c4ae4d8
·
verified ·
1 Parent(s): 2c12930

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -2,7 +2,7 @@ from dotenv import load_dotenv
2
  import time
3
  import gradio as gr
4
  from PIL import Image
5
- from ChatCohere import chat_completion, summarize
6
  from PokemonCards import choose_random_cards
7
  from QdrantRag import NeuralSearcher, SemanticCache, qdrant_client, encoder, image_encoder, processor, sparse_encoder
8
  load_dotenv()
@@ -11,7 +11,7 @@ load_dotenv()
11
  searcher = NeuralSearcher("pokemon_texts", "pokemon_images", qdrant_client, encoder, image_encoder, processor, sparse_encoder)
12
  semantic_cache = SemanticCache(qdrant_client, encoder, "semantic_cache", 0.75)
13
 
14
- def chat_pokemon(message: str, history):
15
  answer = semantic_cache.search_cache(message)
16
  if answer != "":
17
  r = ""
@@ -23,8 +23,7 @@ def chat_pokemon(message: str, history):
23
  context_search = searcher.search_text(message)
24
  reranked_context = searcher.reranking(message, context_search)
25
  context = "\n\n-----------------\n\n".join(reranked_context)
26
- final_prompt = f"USER QUERY:\n\n{message}\n\nCONTEXT:\n\n{context}"
27
- response = chat_completion(final_prompt)
28
  semantic_cache.upload_to_cache(message, response)
29
  r = ""
30
  for c in response:
@@ -41,14 +40,14 @@ def card_package(n_cards:int=5):
41
  description, cards = choose_random_cards(n_cards)
42
  package = [f"![Card {i+1}]({cards[i]})" for i in range(len(cards))]
43
  cards_message = "\n\n".join(package)
44
- natural_lang_description = chat_completion(f"Can you enthusiastically describe the cards in this package?\n\n{description}")
45
  return "## Your package:\n\n" + cards_message + "\n\n## Description:\n\n" + summarize(natural_lang_description)
46
 
47
 
48
  iface1 = gr.ChatInterface(fn=chat_pokemon, title="Pokemon Chatbot", description="Ask any question about Pokemon and get an answer!")
49
  iface2 = gr.Interface(fn=what_pokemon, title="Pokemon Image Classifier", description="Upload an image of a Pokemon and get its name!", inputs="image", outputs="text")
50
- iface3 = gr.Interface(fn=card_package, title="Pokemon Card Package", description="Get a package of random Pokemon cards!", inputs=gr.Slider(5,10,step=1, label="Number of cards"), outputs=gr.Markdown(value="Your output will be displayed here", label="Card Package"))
51
 
52
  iface = gr.TabbedInterface([iface1, iface2, iface3], ["PokemonChat", "Identify Pokemon", "Card Package"])
53
 
54
- iface.launch()
 
2
  import time
3
  import gradio as gr
4
  from PIL import Image
5
+ from ChatCohere import chat_completion, summarize, card_completion
6
  from PokemonCards import choose_random_cards
7
  from QdrantRag import NeuralSearcher, SemanticCache, qdrant_client, encoder, image_encoder, processor, sparse_encoder
8
  load_dotenv()
 
11
  searcher = NeuralSearcher("pokemon_texts", "pokemon_images", qdrant_client, encoder, image_encoder, processor, sparse_encoder)
12
  semantic_cache = SemanticCache(qdrant_client, encoder, "semantic_cache", 0.75)
13
 
14
+ def chat_pokemon(message: str):
15
  answer = semantic_cache.search_cache(message)
16
  if answer != "":
17
  r = ""
 
23
  context_search = searcher.search_text(message)
24
  reranked_context = searcher.reranking(message, context_search)
25
  context = "\n\n-----------------\n\n".join(reranked_context)
26
+ response = chat_completion(message, "Context:\n\n"+context)
 
27
  semantic_cache.upload_to_cache(message, response)
28
  r = ""
29
  for c in response:
 
40
  description, cards = choose_random_cards(n_cards)
41
  package = [f"![Card {i+1}]({cards[i]})" for i in range(len(cards))]
42
  cards_message = "\n\n".join(package)
43
+ natural_lang_description = card_completion(f"Can you enthusiastically describe the cards in this package?\n\n{description}")
44
  return "## Your package:\n\n" + cards_message + "\n\n## Description:\n\n" + summarize(natural_lang_description)
45
 
46
 
47
  iface1 = gr.ChatInterface(fn=chat_pokemon, title="Pokemon Chatbot", description="Ask any question about Pokemon and get an answer!")
48
  iface2 = gr.Interface(fn=what_pokemon, title="Pokemon Image Classifier", description="Upload an image of a Pokemon and get its name!", inputs="image", outputs="text")
49
+ iface3 = gr.Interface(fn=card_package, title="Pokemon Card Package", description="Get a package of random Pokemon cards!", inputs=gr.Slider(5,10,step=1), outputs=gr.Markdown(value="Your output will be displayed here", label="Card Package"))
50
 
51
  iface = gr.TabbedInterface([iface1, iface2, iface3], ["PokemonChat", "Identify Pokemon", "Card Package"])
52
 
53
+ iface.launch(server_name="0.0.0.0", server_port=7860)