Spaces:
Sleeping
Sleeping
ashishanand
commited on
Commit
·
a05b44b
1
Parent(s):
1a492a3
Removed pdf directory from tracking
Browse files- .gitattributes +2 -0
- app.py +106 -110
- car-manuals/manual_Astor.pdf +0 -3
- car-manuals/manual_Tiago.pdf +0 -3
.gitattributes
CHANGED
@@ -33,5 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
36 |
chromadb/* filter=lfs diff=lfs merge=lfs -text
|
37 |
car-manuals/* filter=lfs diff=lfs merge=lfs -text
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chromadb/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
chromadb/e820442b-1d6c-4933-8a2c-981f60377458 filter=lfs diff=lfs merge=lfs -text
|
38 |
chromadb/* filter=lfs diff=lfs merge=lfs -text
|
39 |
car-manuals/* filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -1,17 +1,12 @@
|
|
1 |
# app.py
|
2 |
|
3 |
import os
|
4 |
-
import re
|
5 |
-
import numpy as np
|
6 |
import torch
|
7 |
-
|
8 |
-
import pdfplumber
|
9 |
-
from chromadb import Client
|
10 |
-
from chromadb.config import Settings
|
11 |
from chromadb.utils import embedding_functions
|
12 |
-
from transformers import AutoTokenizer
|
13 |
from rerankers import Reranker
|
14 |
-
from transformers import GPT2TokenizerFast
|
15 |
from groq import Groq
|
16 |
from chromadb import PersistentClient
|
17 |
import gradio as gr
|
@@ -24,26 +19,26 @@ chat_client = Groq(api_key=groq_api_key)
|
|
24 |
model = "llama-3.2-90b-text-preview"
|
25 |
|
26 |
|
27 |
-
def parse_pdf(pdf_path):
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
def preprocess_text(text):
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
def call_Llama_api(query, context):
|
49 |
# ... (same as your original function)
|
@@ -69,47 +64,48 @@ def call_Llama_api(query, context):
|
|
69 |
return response
|
70 |
|
71 |
|
72 |
-
def chunk_texts(texts, max_tokens=500, overlap_tokens=50):
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
def is_car_model_available(query, available_models):
|
115 |
# ... (same as your original function)
|
@@ -118,15 +114,15 @@ def is_car_model_available(query, available_models):
|
|
118 |
return model
|
119 |
return None
|
120 |
|
121 |
-
def extract_car_model(pdf_filename):
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
def colbert_rerank(query=None, chunks=None):
|
132 |
# ... (same as your original function)
|
@@ -179,7 +175,7 @@ def initialize():
|
|
179 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
180 |
print(f"Using device: {device}")
|
181 |
|
182 |
-
tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # For token counting
|
183 |
|
184 |
# Initialize embedding model
|
185 |
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
@@ -191,18 +187,18 @@ def initialize():
|
|
191 |
# Get the collection
|
192 |
collection_name = "car_manuals5"
|
193 |
|
194 |
-
if collection_name in [col.name for col in client.list_collections()]:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
else:
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
|
208 |
# collection = client.get_or_create_collection(
|
@@ -213,29 +209,29 @@ def initialize():
|
|
213 |
# Set available car models
|
214 |
# available_car_models = ['TIAGO', 'Astor']
|
215 |
|
216 |
-
pdf_files = ['./car_manuals/manual_Tiago.pdf', './car_manuals/manual_Astor.pdf']
|
217 |
-
available_car_models = []
|
218 |
-
|
219 |
-
for pdf_file in pdf_files:
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
|
240 |
|
241 |
|
|
|
1 |
# app.py
|
2 |
|
3 |
import os
|
4 |
+
# import re
|
|
|
5 |
import torch
|
6 |
+
# import pdfplumber
|
|
|
|
|
|
|
7 |
from chromadb.utils import embedding_functions
|
|
|
8 |
from rerankers import Reranker
|
9 |
+
# from transformers import GPT2TokenizerFast
|
10 |
from groq import Groq
|
11 |
from chromadb import PersistentClient
|
12 |
import gradio as gr
|
|
|
19 |
model = "llama-3.2-90b-text-preview"
|
20 |
|
21 |
|
22 |
+
# def parse_pdf(pdf_path):
|
23 |
|
24 |
+
# texts = []
|
25 |
+
# with pdfplumber.open(pdf_path) as pdf:
|
26 |
+
# for page_num, page in enumerate(pdf.pages, start=1):
|
27 |
+
# text = page.extract_text()
|
28 |
+
# if text:
|
29 |
+
# texts.append({
|
30 |
+
# 'text': text,
|
31 |
+
# 'metadata': {
|
32 |
+
# 'page_number': page_num
|
33 |
+
# }
|
34 |
+
# })
|
35 |
+
# return texts
|
36 |
|
37 |
+
# def preprocess_text(text):
|
38 |
+
# # ... (same as your original function)
|
39 |
+
# text = re.sub(r'\s+', ' ', text)
|
40 |
+
# text = text.strip()
|
41 |
+
# return text
|
42 |
|
43 |
def call_Llama_api(query, context):
|
44 |
# ... (same as your original function)
|
|
|
64 |
return response
|
65 |
|
66 |
|
67 |
+
# def chunk_texts(texts, max_tokens=500, overlap_tokens=50):
|
68 |
+
# """
|
69 |
+
# Splits texts into chunks based on paragraphs with overlap to preserve context.
|
70 |
+
|
71 |
+
# """
|
72 |
+
# global tokenizer
|
73 |
+
# chunks = []
|
74 |
+
# for item in texts:
|
75 |
+
# text = preprocess_text(item['text'])
|
76 |
+
# if not text:
|
77 |
+
# continue
|
78 |
+
# metadata = item['metadata']
|
79 |
+
# # Split text into paragraphs
|
80 |
+
# paragraphs = text.split('\n\n')
|
81 |
+
# current_chunk = ''
|
82 |
+
# current_tokens = 0
|
83 |
+
# for i, paragraph in enumerate(paragraphs):
|
84 |
+
# paragraph = paragraph.strip()
|
85 |
+
# if not paragraph:
|
86 |
+
# continue
|
87 |
+
# paragraph_tokens = len(tokenizer.encode(paragraph))
|
88 |
+
# if current_tokens + paragraph_tokens <= max_tokens:
|
89 |
+
# current_chunk += paragraph + '\n\n'
|
90 |
+
# current_tokens += paragraph_tokens
|
91 |
+
# else:
|
92 |
+
# # Save the current chunk
|
93 |
+
# chunk = {
|
94 |
+
# 'text': current_chunk.strip(),
|
95 |
+
# 'metadata': metadata
|
96 |
+
# }
|
97 |
+
# chunks.append(chunk)
|
98 |
+
# # Start a new chunk with overlap
|
99 |
+
# overlap_text = ' '.join(current_chunk.split()[-overlap_tokens:])
|
100 |
+
# current_chunk = overlap_text + ' ' + paragraph + '\n\n'
|
101 |
+
# current_tokens = len(tokenizer.encode(current_chunk))
|
102 |
+
# if current_chunk:
|
103 |
+
# chunk = {
|
104 |
+
# 'text': current_chunk.strip(),
|
105 |
+
# 'metadata': metadata
|
106 |
+
# }
|
107 |
+
# chunks.append(chunk)
|
108 |
+
# return chunks
|
109 |
|
110 |
def is_car_model_available(query, available_models):
|
111 |
# ... (same as your original function)
|
|
|
114 |
return model
|
115 |
return None
|
116 |
|
117 |
+
# def extract_car_model(pdf_filename):
|
118 |
|
119 |
+
# base_name = os.path.basename(pdf_filename)
|
120 |
+
# match = re.search(r'manual_(.+)\.pdf', base_name)
|
121 |
+
# if match:
|
122 |
+
# model_name = match.group(1).replace('_', ' ').title()
|
123 |
+
# return model_name
|
124 |
+
# else:
|
125 |
+
# return 'Unknown Model'
|
126 |
|
127 |
def colbert_rerank(query=None, chunks=None):
|
128 |
# ... (same as your original function)
|
|
|
175 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
176 |
print(f"Using device: {device}")
|
177 |
|
178 |
+
# tokenizer = GPT2TokenizerFast.from_pretrained("gpt2") # For token counting
|
179 |
|
180 |
# Initialize embedding model
|
181 |
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(
|
|
|
187 |
# Get the collection
|
188 |
collection_name = "car_manuals5"
|
189 |
|
190 |
+
# if collection_name in [col.name for col in client.list_collections()]:
|
191 |
+
# collection = client.get_collection(
|
192 |
+
# name=collection_name,
|
193 |
+
# embedding_function=embedding_function
|
194 |
+
# )
|
195 |
+
available_car_models = ['Tiago', 'Astor']
|
196 |
|
197 |
+
# else:
|
198 |
+
collection = client.get_collection(
|
199 |
+
name=collection_name,
|
200 |
+
embedding_function=embedding_function
|
201 |
+
)
|
202 |
|
203 |
|
204 |
# collection = client.get_or_create_collection(
|
|
|
209 |
# Set available car models
|
210 |
# available_car_models = ['TIAGO', 'Astor']
|
211 |
|
212 |
+
# pdf_files = ['./car_manuals/manual_Tiago.pdf', './car_manuals/manual_Astor.pdf']
|
213 |
+
# available_car_models = []
|
214 |
+
|
215 |
+
# for pdf_file in pdf_files:
|
216 |
+
# print(f"Parsing {pdf_file}...")
|
217 |
+
# pdf_texts = parse_pdf(pdf_file)
|
218 |
+
# car_model = extract_car_model(pdf_file)
|
219 |
+
# available_car_models.append(car_model)
|
220 |
+
# # Add car model to metadata
|
221 |
+
# for item in pdf_texts:
|
222 |
+
# item['metadata']['car_model'] = car_model
|
223 |
+
# # Chunk texts using the refined strategy
|
224 |
+
# chunks = chunk_texts(pdf_texts, max_tokens=500, overlap_tokens=50)
|
225 |
+
# # Prepare data for ChromaDB
|
226 |
+
# documents = [chunk['text'] for chunk in chunks]
|
227 |
+
# metadatas = [chunk['metadata'] for chunk in chunks]
|
228 |
+
# ids = [f"{car_model}_{i}" for i in range(len(documents))]
|
229 |
+
# # Add to ChromaDB collection
|
230 |
+
# collection.add(
|
231 |
+
# documents=documents,
|
232 |
+
# metadatas=metadatas,
|
233 |
+
# ids=ids
|
234 |
+
# )
|
235 |
|
236 |
|
237 |
|
car-manuals/manual_Astor.pdf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7275b9aae94841441d33ec596e65ffe2bd738f42a980ab1b53d26d35a725b73e
|
3 |
-
size 8105807
|
|
|
|
|
|
|
|
car-manuals/manual_Tiago.pdf
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:b71ee499e53973ccbabdd49b11995cc374bf9c543d372d4bc63ea8f7414cd7fa
|
3 |
-
size 2564414
|
|
|
|
|
|
|
|