|
|
|
|
|
import os |
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
|
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
from statistics import mode |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
|
|
|
|
def classify_GPU(input_data): |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 1024 |
|
PAD_IDX = 14627 |
|
DEVICE = 'cpu' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Annotated_MIDI_Dataset_Classifier_Trained_Model_21269_steps_0.4335_loss_0.8716_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
number_of_batches = 1 |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Annotated MIDI Dataset Classifier') |
|
print('=' * 70) |
|
print('Classifying...') |
|
|
|
torch.cuda.empty_cache() |
|
|
|
model.eval() |
|
|
|
results = [] |
|
|
|
for input in input_data: |
|
|
|
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device=DEVICE) |
|
|
|
with ctx: |
|
out = model.generate(x, |
|
1, |
|
temperature=0.9, |
|
filter_logits_fn=top_k, |
|
filter_kwargs={'k': 1}, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
y = out.tolist() |
|
|
|
output = [l[0] for l in y] |
|
result = mode(output) |
|
|
|
results.append(result) |
|
|
|
return output, results |
|
|
|
|
|
|
|
def ClassifyMIDI(input_midi): |
|
|
|
SEQ_LEN = 1024 |
|
PAD_IDX = 14627 |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
|
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
|
|
print('-' * 70) |
|
print('Input file name:', fn) |
|
|
|
print('=' * 70) |
|
print('Loading MIDI file...') |
|
|
|
midi_name = fn |
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) |
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
escore = [e for e in TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) if e[6] < 80] |
|
|
|
cscore = TMIDIX.chordify_score([1000, escore]) |
|
|
|
|
|
|
|
|
|
|
|
melody_chords = [] |
|
|
|
pe = cscore[0][0] |
|
|
|
for c in cscore: |
|
|
|
pitches = [] |
|
|
|
for e in c: |
|
|
|
if e[4] not in pitches: |
|
|
|
dtime = max(0, min(127, e[1]-pe[1])) |
|
|
|
dur = max(1, min(127, e[2])) |
|
ptc = max(1, min(127, e[4])) |
|
|
|
melody_chords.append([dtime, dur, ptc]) |
|
|
|
pitches.append(ptc) |
|
|
|
pe = e |
|
|
|
|
|
|
|
seq = [] |
|
input_data = [] |
|
|
|
notes_counter = 0 |
|
|
|
for mm in melody_chords: |
|
|
|
time = mm[0] |
|
dur = mm[1] |
|
ptc = mm[2] |
|
|
|
seq.extend([time, dur+128, ptc+256]) |
|
notes_counter += 1 |
|
|
|
for i in range(0, len(seq)-SEQ_LEN-4, (SEQ_LEN-4) // 4): |
|
schunk = seq[i:i+SEQ_LEN-4] |
|
input_data.append([14624] + schunk + [14625]) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
classification_summary_string = '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('Composition has', notes_counter, 'notes') |
|
print('=' * 70) |
|
print('Composition was split into' , len(input_data), 'chunks of 340 notes each with 255 notes overlap') |
|
print('Number of notes in all composition chunks:', len(input_data) * 340) |
|
|
|
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
classification_summary_string += 'Composition was split into ' + str(len(input_data)) + ' chunks of 340 notes each with 170 notes overlap\n' |
|
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
output, results = classify_GPU(input_data) |
|
|
|
all_results_labels = [classifier_labels[0][r-384] for r in results] |
|
final_result = mode(results) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
print('Most common classification label:', classifier_labels[0][final_result-384]) |
|
print('Most common classification label ratio:' , results.count(final_result) / len(results)) |
|
print('Most common classification label index', final_result) |
|
print('=' * 70) |
|
|
|
classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n' |
|
classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n' |
|
classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n' |
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('All classification labels summary:') |
|
print('=' * 70) |
|
|
|
for i, a in enumerate(all_results_labels): |
|
print('Notes', i*85, '-', (i*85)+340, '===', a) |
|
classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n' |
|
|
|
classification_summary_string += '=' * 70 |
|
classification_summary_string += '\n' |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384]) |
|
|
|
output_score = processed_scores[score_idx][1][:6000] |
|
|
|
print('=' * 70) |
|
print('Sample INTs', results[:15]) |
|
print('=' * 70) |
|
|
|
fn1 = processed_scores[score_idx][0] |
|
|
|
output_score = TMIDIX.recalculate_score_timings(output_score) |
|
|
|
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score, |
|
output_signature = 'Advanced MIDI Classifier', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches, |
|
timings_multiplier=16 |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi_summary = classification_summary_string |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
print('Loading Annotated MIDI Dataset processed scores...') |
|
processed_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_scores') |
|
processed_scores_labels = [l[0] for l in processed_scores] |
|
print('=' * 70) |
|
|
|
print('Loading Annotated MIDI Dataset Classifier Songs Artists Labels...') |
|
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Annotated_MIDI_Dataset_Classifier_Songs_Artists_Labels') |
|
print('=' * 70) |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Classifier</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Detailed MIDI classification with transformers</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n" |
|
"This is a demo for Annotated MIDI Dataset\n\n" |
|
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n" |
|
) |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
|
|
run_btn = gr.Button("classify", variant="primary") |
|
|
|
gr.Markdown("## Classification results") |
|
|
|
output_midi_title = gr.Textbox(label="Best classification match MIDI title") |
|
output_midi_summary = gr.Textbox(label="MIDI classification summary") |
|
output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Best classification match MIDI score plot") |
|
output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"]) |
|
|
|
run_event = run_btn.click(ClassifyMIDI, [input_midi], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) |
|
|
|
app.queue().launch() |