asigalov61's picture
Update app.py
2e762b3 verified
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Classifier
import os
import time as reqtime
import datetime
from pytz import timezone
import torch
# import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
from statistics import mode
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
# in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
# @spaces.GPU
def classify_GPU(input_data):
print('Loading model...')
SEQ_LEN = 1024
PAD_IDX = 14627
DEVICE = 'cpu' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 12, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Annotated_MIDI_Dataset_Classifier_Trained_Model_21269_steps_0.4335_loss_0.8716_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
#==================================================================
number_of_batches = 1 # @param {type:"slider", min:1, max:100, step:1}
# @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification
print('=' * 70)
print('Annotated MIDI Dataset Classifier')
print('=' * 70)
print('Classifying...')
torch.cuda.empty_cache()
model.eval()
results = []
for input in input_data:
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device=DEVICE)
with ctx:
out = model.generate(x,
1,
temperature=0.9,
filter_logits_fn=top_k,
filter_kwargs={'k': 1},
return_prime=False,
verbose=False)
y = out.tolist()
output = [l[0] for l in y]
result = mode(output)
results.append(result)
return output, results
# =================================================================================================
def ClassifyMIDI(input_midi):
SEQ_LEN = 1024
PAD_IDX = 14627
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('-' * 70)
print('Input file name:', fn)
print('=' * 70)
print('Loading MIDI file...')
midi_name = fn
raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read())
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore = [e for e in TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) if e[6] < 80]
cscore = TMIDIX.chordify_score([1000, escore])
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
melody_chords = []
pe = cscore[0][0]
for c in cscore:
pitches = []
for e in c:
if e[4] not in pitches:
dtime = max(0, min(127, e[1]-pe[1]))
dur = max(1, min(127, e[2]))
ptc = max(1, min(127, e[4]))
melody_chords.append([dtime, dur, ptc])
pitches.append(ptc)
pe = e
#==============================================================
seq = []
input_data = []
notes_counter = 0
for mm in melody_chords:
time = mm[0]
dur = mm[1]
ptc = mm[2]
seq.extend([time, dur+128, ptc+256])
notes_counter += 1
for i in range(0, len(seq)-SEQ_LEN-4, (SEQ_LEN-4) // 4):
schunk = seq[i:i+SEQ_LEN-4]
input_data.append([14624] + schunk + [14625])
print('Done!')
print('=' * 70)
#==============================================================
classification_summary_string = '=' * 70
classification_summary_string += '\n'
print('Composition has', notes_counter, 'notes')
print('=' * 70)
print('Composition was split into' , len(input_data), 'chunks of 340 notes each with 255 notes overlap')
print('Number of notes in all composition chunks:', len(input_data) * 340)
classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
classification_summary_string += 'Composition was split into ' + str(len(input_data)) + ' chunks of 340 notes each with 170 notes overlap\n'
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
output, results = classify_GPU(input_data)
all_results_labels = [classifier_labels[0][r-384] for r in results]
final_result = mode(results)
print('Done!')
print('=' * 70)
print('Most common classification label:', classifier_labels[0][final_result-384])
print('Most common classification label ratio:' , results.count(final_result) / len(results))
print('Most common classification label index', final_result)
print('=' * 70)
classification_summary_string += 'Most common classification label: ' + str(classifier_labels[0][final_result-384]) + '\n'
classification_summary_string += 'Most common classification label ratio: ' + str(results.count(final_result) / len(results)) + '\n'
classification_summary_string += 'Most common classification label index '+ str(final_result) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('All classification labels summary:')
print('=' * 70)
for i, a in enumerate(all_results_labels):
print('Notes', i*85, '-', (i*85)+340, '===', a)
classification_summary_string += 'Notes ' + str(i*85) + ' - ' + str((i*85)+340) + ' === ' + str(a) + '\n'
classification_summary_string += '=' * 70
classification_summary_string += '\n'
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
score_idx = processed_scores_labels.index(classifier_labels[0][final_result-384])
output_score = processed_scores[score_idx][1][:6000]
print('=' * 70)
print('Sample INTs', results[:15])
print('=' * 70)
fn1 = processed_scores[score_idx][0]
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Advanced MIDI Classifier',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=16
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = classification_summary_string
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True, timings_multiplier=16)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
print('Loading Annotated MIDI Dataset processed scores...')
processed_scores = TMIDIX.Tegridy_Any_Pickle_File_Reader('processed_scores')
processed_scores_labels = [l[0] for l in processed_scores]
print('=' * 70)
print('Loading Annotated MIDI Dataset Classifier Songs Artists Labels...')
classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Annotated_MIDI_Dataset_Classifier_Songs_Artists_Labels')
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Classifier</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Detailed MIDI classification with transformers</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Classifier&style=flat)\n\n"
"This is a demo for Annotated MIDI Dataset\n\n"
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
)
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
run_btn = gr.Button("classify", variant="primary")
gr.Markdown("## Classification results")
output_midi_title = gr.Textbox(label="Best classification match MIDI title")
output_midi_summary = gr.Textbox(label="MIDI classification summary")
output_audio = gr.Audio(label="Best classification match MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Best classification match MIDI score plot")
output_midi = gr.File(label="Best classification match MIDI file", file_types=[".mid"])
run_event = run_btn.click(ClassifyMIDI, [input_midi],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch()