File size: 16,757 Bytes
a174779
 
 
fc1422a
 
 
 
 
 
 
 
 
 
 
 
a174779
bb288c5
 
 
fc1422a
 
 
 
 
 
 
 
 
 
4f0aae9
fc1422a
 
 
e2d614e
 
 
fc1422a
12586a9
 
 
fc1422a
 
 
 
 
 
12586a9
 
 
 
 
 
fc1422a
 
12586a9
fc1422a
 
b960d89
e2d614e
fc1422a
 
 
 
 
12586a9
fc1422a
b960d89
 
 
e2d614e
fc1422a
 
 
 
 
 
e2d614e
fc1422a
e2d614e
fc1422a
 
 
 
 
 
 
e2d614e
fc1422a
2798081
 
e2d614e
fc1422a
 
bb288c5
fc1422a
 
bb288c5
fc1422a
bb288c5
 
 
fc1422a
bb288c5
3c5d93e
bb288c5
 
3c5d93e
bb288c5
 
 
 
 
 
 
 
 
 
2f385b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5d93e
2f385b1
 
 
 
 
 
3c5d93e
2f385b1
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5d93e
2f385b1
 
bb288c5
2f385b1
 
 
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
 
 
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb288c5
2f385b1
 
 
 
 
 
bb288c5
 
 
8dfb8cd
bb288c5
3c5d93e
 
fc1422a
 
 
bb288c5
fc1422a
 
 
7f3082d
fc1422a
2798081
8dfb8cd
fc1422a
5554ee0
2798081
4f0aae9
2798081
4f0aae9
fc1422a
4f0aae9
8dfb8cd
3ceed14
8dfb8cd
 
 
 
0a38635
 
4f0aae9
8dfb8cd
 
 
 
 
4f0aae9
8dfb8cd
8765df9
fc1422a
 
 
 
 
 
 
 
7f3082d
fc1422a
 
8dfb8cd
fc1422a
8dfb8cd
fc1422a
 
 
8dfb8cd
fc1422a
8dfb8cd
fc1422a
3c5d93e
fc1422a
bb288c5
 
3c5d93e
bb288c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5d93e
bb288c5
fc1422a
 
bb288c5
fc1422a
 
bb288c5
 
fc1422a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb288c5
fc1422a
 
 
 
 
 
 
 
 
2798081
fc1422a
2798081
fc1422a
2798081
fc1422a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a16971
 
fc1422a
1a16971
 
fc1422a
06b8dc2
fc1422a
 
 
 
 
0a38635
4f0aae9
fc1422a
2798081
fc1422a
 
 
 
 
 
 
 
 
4f0aae9
fc1422a
 
 
0a38635
 
 
 
 
 
06b8dc2
4f0aae9
fc1422a
2798081
5554ee0
beb2b6f
fc1422a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Ultimate-Chords-Progressions-Transformer
#==================================================================================

import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random

import statistics
import copy

import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

# =================================================================================================
                       
@spaces.GPU
def Generate_Chords(input_midi, input_num_prime_chords, input_num_gen_chords):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()
    
    print('=' * 70)
    print('Instantiating the model...')

    SEQ_LEN = 8192
    PAD_IDX = 2239
    DEVICE = 'cuda' # 'cpu'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 2048, 
                              depth = 8, 
                              heads = 32, 
                              rotary_pos_emb = True,  
                              attn_flash = True
                             )
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)

    model.to(DEVICE)
    
    print('Done!')
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Ultimate_Chords_Progressions_Transformer_Trained_Model_LAX_5858_steps_0.4506_loss_0.8724_acc.pth',
                   map_location=DEVICE))

    model.eval()
    
    print('Done!')
    print('=' * 70)


    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.bfloat16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    print('=' * 70)
    print('Input file name:', fn)
    print('Num prime chords:', input_num_prime_chords)
    print('Num gen chords:', input_num_gen_chords)
    print('=' * 70)

    #===============================================================================
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
    
    if escore_notes:
        
        escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=32, legacy_timings=True)
    
        if escore_notes:
    
            #=======================================================
            # PRE-PROCESSING
    
            # checking number of instruments in a composition
            instruments_list = sorted(set([e[6] for e in escore_notes]))
            instruments_list_without_drums = sorted(set([e[6] for e in escore_notes if e[3] != 9]))
            main_instruments_list = sorted(set([e[6] for e in escore_notes if e[6] < 80]))
            
            comp_times = [e[1] for e in escore_notes if e[6] < 80]
                
            comp_dtimes = [max(1, min(127, b-a)) for a, b in zip(comp_times[:-1], comp_times[1:]) if b-a != 0]
            avg_comp_dtime = max(0, min(127, int(sum(comp_dtimes) / len(comp_dtimes))))
            
            #=======================================================
            # FINAL PROCESSING

            #=======================================================
            # Adjusting avg velocity

            vels = [e[5] for e in escore_notes]
            avg_vel = int(sum(vels) / len(vels))

            if avg_vel < 60:
                TMIDIX.adjust_score_velocities(escore_notes, avg_vel * 2)

            melody_chords = []
            melody_chords2 = []
            mel_cho = []

            #=======================================================
            # Break between compositions / Intro seq

            if 128 in instruments_list:
                drums_present = 1931 # Yes
            else:
                drums_present = 1930 # No

            melody_chords.extend([1929, drums_present])
            mel_cho.extend([1929, drums_present])

            #=======================================================
            # Composition patches list

            melody_chords.extend([i+1932 for i in instruments_list_without_drums])
            mel_cho.extend([i+1932 for i in instruments_list_without_drums])
            #=======================================================
            # Composition avg pitch and dtime

            mode_instruments_pitch = statistics.mode([e[4] for e in escore_notes if e[6] < 80])

            melody_chords.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime])
            mel_cho.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime])

            melody_chords2.append(mel_cho)

            #=======================================================
            # MAIN PROCESSING CYCLE
            #=======================================================

            cscore = TMIDIX.chordify_score([1000, escore_notes])

            pc = cscore[0] # Previous chord

            for i, c in enumerate(cscore):

                c.sort(key=lambda x: x[6]) # Sorting by patch

                #=======================================================
                # Outro seq

                #if len(cscore) > 256:
                #    if len(cscore) - i == 64:
                #        melody_chords.extend([2236])

                #=======================================================
                # Timings...

                # Cliping all values...
                delta_time = max(0, min(127, c[0][1]-pc[0][1]))

                #=======================================================
                # Chords...

                cpitches = sorted([e[4] for e in c if e[3] != 9])
                dpitches = [e[4] for e in c if e[3] == 9]

                tones_chord = sorted(set([p % 12 for p in cpitches]))

                if tones_chord:

                    if tones_chord not in TMIDIX.ALL_CHORDS_SORTED:
                        tones_chord_tok = 644
                        tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(TMIDIX.advanced_check_and_fix_tones_chord(tones_chord, cpitches[-1]))

                    else:
                        tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord) # 321

                    if dpitches:

                        if tones_chord_tok == 644:
                            tones_chord_tok = 645
                        else:
                            tones_chord_tok += 321

                else:
                    tones_chord_tok = 643 # Drums-only chord

                #=======================================================
                # Writing chord/time...

                melody_chords.extend([tones_chord_tok, delta_time+646])
                
                mel_cho = []
                mel_cho.extend([tones_chord_tok, delta_time+646])

                #=======================================================
                # Notes...

                pp = -1

                for e in c:

                    #=======================================================
                    # Duration
                    dur = max(0, min(63, int(max(0, e[2] // 4) * 2)))

                    # Pitch
                    ptc = max(1, min(127, e[4]))

                    # Octo-velocity
                    vel = max(8, min(127, (max(1, e[5] // 8) * 8)))
                    velocity = round(vel / 15)-1

                    # Patch
                    pat = max(0, min(128, e[6]))
                    
                    if 7 < pat < 80:
                        ptc += 128

                    elif 79 < pat < 128:
                        ptc += 256

                    elif pat == 128:
                        ptc += 384

                    #=======================================================
                    # FINAL NOTE SEQ

                    # Writing final note asynchronously

                    dur_vel = (8 * dur) + velocity # 512

                    if pat != pp:
                        melody_chords.extend([pat+774, ptc+904, dur_vel+1416]) # 1928
                        mel_cho.extend([pat+774, ptc+904, dur_vel+1416])

                    else:
                        melody_chords.extend([ptc+904, dur_vel+1416])
                        mel_cho.extend([ptc+904, dur_vel+1416])

                    pp = pat

                pc = c

                melody_chords2.append(mel_cho)

                #=======================================================

            #melody_chords.extend([2237]) # EOS

            #=======================================================
            # TOTAL DICTIONARY SIZE 2237+1=2238
            #=======================================================
    
    print('Done!')
    print('=' * 70)
    print('Melody chords length:', len(melody_chords))
    print('=' * 70)
        
    #==================================================================

    print('=' * 70)
    
    print('Sample output events', melody_chords[:12])
    print('=' * 70)
    print('Generating...')

    output = []
    
    for m in melody_chords2[:input_num_prime_chords]:
        output.extend(m)
    
    for ct in tqdm.tqdm(melody_chords2[input_num_prime_chords:input_num_prime_chords+input_num_gen_chords]):

        output.extend(ct[:2])
  
        y = 774
    
        while y > 773:
    
            x = torch.LongTensor(output).to(DEVICE)
            
            with ctx:
                out = model.generate(x,
                                     1,
                                     filter_logits_fn=top_p,
                                     filter_kwargs={'thres': 0.96},
                                     temperature=0.9,
                                     return_prime=False,
                                     verbose=False)
            
            y = out.tolist()[0][0]
    
            if y > 773:
                output.append(y)

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', output[:12])
    print('=' * 70)
    
    if len(output) != 0:
    
        song = output
        song_f = []
    
        time = 0
        dur = 4
        vel = 90
        pitch = 60
        channel = 0
        
        patches = [0] * 16
        patches[9] = 9
    
        for ss in song:
    
            if 645 < ss < 774:
    
                time += (ss-646)
                
            if 773 < ss < 904:
                
                pat = (ss - 774)
                     
                chan = (pat // 8)
                
                if 0 <= chan < 9:
                    channel = chan
                
                elif 8 < chan < 15:
                    channel = chan + 1
    
                elif chan == 16:
                    channel = 9
    
            if 903 < ss < 1416:
    
                pitch = (ss-904) % 128
    
            if 1415 < ss < 1928:
    
                dur = (((ss-1416) // 8)+1) * 2
                vel = (((ss-1416) % 8)+1) * 15
                
                song_f.append(['note', time, dur, channel, pitch, vel, pat])
    
    song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)

    fn1 = "Ultimate-Chords-Progressions-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Ultimate Chords Progressions Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches,
                                                              timings_multiplier=32
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True, timings_multiplier=32)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', '')
    print('=' * 70) 
    

    #========================================================
    
    print('=' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')
    print('*' * 70)

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Chords Progressions Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Self-correcting multi-instrumental chords-conditioned music RoPE transformer</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Chords-Progressions-Transformer&style=flat)\n\n"
            "Check out [Ultimate Chords Progressions Transformer](https://huggingface.co/asigalov61/Ultimate-Chords-Progressions-Transformer) on Hugging Face!\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)"
            " for faster execution and endless generation"
        )
        gr.Markdown("## Upload your MIDI or select a sample example MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_num_prime_chords = gr.Slider(1, 128, value=32, step=1, label="Number of prime chords")
        input_num_gen_chords = gr.Slider(4, 256, value=128, step=1, label="Number of composition chords to generate progression for")
        
        run_btn = gr.Button("Generate Chords", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Generate_Chords, [input_midi, input_num_prime_chords, input_num_gen_chords],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Chords-Progressions-Transformer-MI-Seed-1.mid", 32, 128],
             ["Chords-Progressions-Transformer-MI-Seed-2.mid", 32, 128],
             ["Chords-Progressions-Transformer-MI-Seed-3.mid", 32, 128],
             ["Chords-Progressions-Transformer-MI-Seed-4.mid", 32, 128],
             ["Chords-Progressions-Transformer-MI-Seed-5.mid", 32, 128],
             ["Chords-Progressions-Transformer-MI-Seed-6.mid", 32, 128]
            ],
            [input_midi, input_num_prime_chords, input_num_gen_chords],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            Generate_Chords,
            cache_examples=True,
            cache_mode='eager'
        )
        
        app.queue().launch()