|
|
|
|
|
|
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
|
|
import statistics |
|
import copy |
|
|
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
def Generate_Chords(input_midi, input_num_prime_chords, input_num_gen_chords): |
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
print('Instantiating the model...') |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 2239 |
|
DEVICE = 'cpu' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 2048, |
|
depth = 8, |
|
heads = 32, |
|
rotary_pos_emb = True, |
|
attn_flash = True |
|
) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Ultimate_Chords_Progressions_Transformer_Trained_Model_LAX_5858_steps_0.4506_loss_0.8724_acc.pth', |
|
map_location=DEVICE)) |
|
|
|
model.eval() |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
fn = os.path.basename(input_midi.name) |
|
fn1 = fn.split('.')[0] |
|
|
|
print('=' * 70) |
|
print('Input file name:', fn) |
|
print('Num prime chords:', input_num_prime_chords) |
|
print('Num gen chords:', input_num_gen_chords) |
|
print('=' * 70) |
|
|
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) |
|
|
|
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True) |
|
|
|
if escore_notes: |
|
|
|
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=32, legacy_timings=True) |
|
|
|
if escore_notes: |
|
|
|
|
|
|
|
|
|
|
|
instruments_list = sorted(set([e[6] for e in escore_notes])) |
|
instruments_list_without_drums = sorted(set([e[6] for e in escore_notes if e[3] != 9])) |
|
main_instruments_list = sorted(set([e[6] for e in escore_notes if e[6] < 80])) |
|
|
|
comp_times = [e[1] for e in escore_notes if e[6] < 80] |
|
|
|
comp_dtimes = [max(1, min(127, b-a)) for a, b in zip(comp_times[:-1], comp_times[1:]) if b-a != 0] |
|
avg_comp_dtime = max(0, min(127, int(sum(comp_dtimes) / len(comp_dtimes)))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vels = [e[5] for e in escore_notes] |
|
avg_vel = int(sum(vels) / len(vels)) |
|
|
|
if avg_vel < 60: |
|
TMIDIX.adjust_score_velocities(escore_notes, avg_vel * 2) |
|
|
|
melody_chords = [] |
|
melody_chords2 = [] |
|
mel_cho = [] |
|
|
|
|
|
|
|
|
|
if 128 in instruments_list: |
|
drums_present = 1931 |
|
else: |
|
drums_present = 1930 |
|
|
|
melody_chords.extend([1929, drums_present]) |
|
mel_cho.extend([1929, drums_present]) |
|
|
|
|
|
|
|
|
|
melody_chords.extend([i+1932 for i in instruments_list_without_drums]) |
|
mel_cho.extend([i+1932 for i in instruments_list_without_drums]) |
|
|
|
|
|
|
|
mode_instruments_pitch = statistics.mode([e[4] for e in escore_notes if e[6] < 80]) |
|
|
|
melody_chords.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime]) |
|
mel_cho.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime]) |
|
|
|
melody_chords2.append(mel_cho) |
|
|
|
|
|
|
|
|
|
|
|
cscore = TMIDIX.chordify_score([1000, escore_notes]) |
|
|
|
pc = cscore[0] |
|
|
|
for i, c in enumerate(cscore): |
|
|
|
c.sort(key=lambda x: x[6]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
delta_time = max(0, min(127, c[0][1]-pc[0][1])) |
|
|
|
|
|
|
|
|
|
cpitches = sorted([e[4] for e in c if e[3] != 9]) |
|
dpitches = [e[4] for e in c if e[3] == 9] |
|
|
|
tones_chord = sorted(set([p % 12 for p in cpitches])) |
|
|
|
if tones_chord: |
|
|
|
if tones_chord not in TMIDIX.ALL_CHORDS_SORTED: |
|
tones_chord_tok = 644 |
|
tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(TMIDIX.advanced_check_and_fix_tones_chord(tones_chord, cpitches[-1])) |
|
|
|
else: |
|
tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord) |
|
|
|
if dpitches: |
|
|
|
if tones_chord_tok == 644: |
|
tones_chord_tok = 645 |
|
else: |
|
tones_chord_tok += 321 |
|
|
|
else: |
|
tones_chord_tok = 643 |
|
|
|
|
|
|
|
|
|
melody_chords.extend([tones_chord_tok, delta_time+646]) |
|
|
|
mel_cho = [] |
|
mel_cho.extend([tones_chord_tok, delta_time+646]) |
|
|
|
|
|
|
|
|
|
pp = -1 |
|
|
|
for e in c: |
|
|
|
|
|
|
|
dur = max(0, min(63, int(max(0, e[2] // 4) * 2))) |
|
|
|
|
|
ptc = max(1, min(127, e[4])) |
|
|
|
|
|
vel = max(8, min(127, (max(1, e[5] // 8) * 8))) |
|
velocity = round(vel / 15)-1 |
|
|
|
|
|
pat = max(0, min(128, e[6])) |
|
|
|
if 7 < pat < 80: |
|
ptc += 128 |
|
|
|
elif 79 < pat < 128: |
|
ptc += 256 |
|
|
|
elif pat == 128: |
|
ptc += 384 |
|
|
|
|
|
|
|
|
|
|
|
|
|
dur_vel = (8 * dur) + velocity |
|
|
|
if pat != pp: |
|
melody_chords.extend([pat+774, ptc+904, dur_vel+1416]) |
|
mel_cho.extend([pat+774, ptc+904, dur_vel+1416]) |
|
|
|
else: |
|
melody_chords.extend([ptc+904, dur_vel+1416]) |
|
mel_cho.extend([ptc+904, dur_vel+1416]) |
|
|
|
pp = pat |
|
|
|
pc = c |
|
|
|
melody_chords2.append(mel_cho) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('Done!') |
|
print('=' * 70) |
|
print('Melody chords length:', len(melody_chords)) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
|
|
print('Sample output events', melody_chords[:12]) |
|
print('=' * 70) |
|
print('Generating...') |
|
|
|
output = [] |
|
|
|
for m in melody_chords2[:input_num_prime_chords]: |
|
output.extend(m) |
|
|
|
for ct in tqdm.tqdm(melody_chords2[input_num_prime_chords:input_num_prime_chords+input_num_gen_chords]): |
|
|
|
output.extend(ct[:2]) |
|
|
|
y = 774 |
|
|
|
while y > 773: |
|
|
|
x = torch.LongTensor(output).to(DEVICE) |
|
|
|
with ctx: |
|
out = model.generate(x, |
|
1, |
|
filter_logits_fn=top_p, |
|
filter_kwargs={'thres': 0.96}, |
|
temperature=0.9, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
y = out.tolist()[0][0] |
|
|
|
if y > 773: |
|
output.append(y) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', output[:12]) |
|
print('=' * 70) |
|
|
|
if len(output) != 0: |
|
|
|
song = output |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 4 |
|
vel = 90 |
|
pitch = 60 |
|
channel = 0 |
|
|
|
patches = [0] * 16 |
|
patches[9] = 9 |
|
|
|
for ss in song: |
|
|
|
if 645 < ss < 774: |
|
|
|
time += (ss-646) |
|
|
|
if 773 < ss < 904: |
|
|
|
pat = (ss - 774) |
|
|
|
chan = (pat // 8) |
|
|
|
if 0 <= chan < 9: |
|
channel = chan |
|
|
|
elif 8 < chan < 15: |
|
channel = chan + 1 |
|
|
|
elif chan == 16: |
|
channel = 9 |
|
|
|
if 903 < ss < 1416: |
|
|
|
pitch = (ss-904) % 128 |
|
|
|
if 1415 < ss < 1928: |
|
|
|
dur = (((ss-1416) // 8)+1) * 2 |
|
vel = (((ss-1416) % 8)+1) * 15 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, pat]) |
|
|
|
song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) |
|
|
|
fn1 = "Ultimate-Chords-Progressions-Transformer-Composition" |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Ultimate Chords Progressions Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches, |
|
timings_multiplier=32 |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi_summary = str(song_f[:3]) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True, timings_multiplier=32) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('Output MIDI summary:', '') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
print('*' * 70) |
|
|
|
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Chords Progressions Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Self-correcting multi-instrumental chords-conditioned music RoPE transformer</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Chords-Progressions-Transformer&style=flat)\n\n" |
|
"Check out [Ultimate Chords Progressions Transformer](https://huggingface.co/asigalov61/Ultimate-Chords-Progressions-Transformer) on Hugging Face!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)" |
|
" for faster execution and endless generation" |
|
) |
|
gr.Markdown("## Upload your MIDI or select a sample example MIDI") |
|
|
|
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
input_num_prime_chords = gr.Slider(1, 128, value=32, step=1, label="Number of prime chords") |
|
input_num_gen_chords = gr.Slider(4, 256, value=128, step=1, label="Number of composition chords to generate progression for") |
|
|
|
run_btn = gr.Button("Generate Chords", variant="primary") |
|
|
|
gr.Markdown("## Generation results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_midi_summary = gr.Textbox(label="Output MIDI summary") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
run_event = run_btn.click(Generate_Chords, [input_midi, input_num_prime_chords, input_num_gen_chords], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) |
|
|
|
gr.Examples( |
|
[["Chords-Progressions-Transformer-MI-Seed-1.mid", 32, 128], |
|
["Chords-Progressions-Transformer-MI-Seed-2.mid", 32, 128], |
|
["Chords-Progressions-Transformer-MI-Seed-3.mid", 32, 128], |
|
["Chords-Progressions-Transformer-MI-Seed-4.mid", 32, 128], |
|
["Chords-Progressions-Transformer-MI-Seed-5.mid", 32, 128], |
|
["Chords-Progressions-Transformer-MI-Seed-6.mid", 32, 128] |
|
], |
|
[input_midi, input_num_prime_chords, input_num_gen_chords], |
|
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], |
|
Generate_Chords, |
|
cache_examples=True, |
|
cache_mode='eager' |
|
) |
|
|
|
app.queue().launch() |