asigalov61's picture
Update app.py
d0ecddf verified
#==================================================================================
# https://huggingface.co/spaces/asigalov61/Ultimate-Chords-Progressions-Transformer
#==================================================================================
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import statistics
import copy
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
# =================================================================================================
# @spaces.GPU
def Generate_Chords(input_midi, input_num_prime_chords, input_num_gen_chords):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Instantiating the model...')
SEQ_LEN = 8192
PAD_IDX = 2239
DEVICE = 'cpu' # 'cpu'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048,
depth = 8,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.to(DEVICE)
print('Done!')
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Chords_Progressions_Transformer_Trained_Model_LAX_5858_steps_0.4506_loss_0.8724_acc.pth',
map_location=DEVICE))
model.eval()
print('Done!')
print('=' * 70)
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('=' * 70)
print('Input file name:', fn)
print('Num prime chords:', input_num_prime_chords)
print('Num gen chords:', input_num_gen_chords)
print('=' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)
if escore_notes:
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], timings_divider=32, legacy_timings=True)
if escore_notes:
#=======================================================
# PRE-PROCESSING
# checking number of instruments in a composition
instruments_list = sorted(set([e[6] for e in escore_notes]))
instruments_list_without_drums = sorted(set([e[6] for e in escore_notes if e[3] != 9]))
main_instruments_list = sorted(set([e[6] for e in escore_notes if e[6] < 80]))
comp_times = [e[1] for e in escore_notes if e[6] < 80]
comp_dtimes = [max(1, min(127, b-a)) for a, b in zip(comp_times[:-1], comp_times[1:]) if b-a != 0]
avg_comp_dtime = max(0, min(127, int(sum(comp_dtimes) / len(comp_dtimes))))
#=======================================================
# FINAL PROCESSING
#=======================================================
# Adjusting avg velocity
vels = [e[5] for e in escore_notes]
avg_vel = int(sum(vels) / len(vels))
if avg_vel < 60:
TMIDIX.adjust_score_velocities(escore_notes, avg_vel * 2)
melody_chords = []
melody_chords2 = []
mel_cho = []
#=======================================================
# Break between compositions / Intro seq
if 128 in instruments_list:
drums_present = 1931 # Yes
else:
drums_present = 1930 # No
melody_chords.extend([1929, drums_present])
mel_cho.extend([1929, drums_present])
#=======================================================
# Composition patches list
melody_chords.extend([i+1932 for i in instruments_list_without_drums])
mel_cho.extend([i+1932 for i in instruments_list_without_drums])
#=======================================================
# Composition avg pitch and dtime
mode_instruments_pitch = statistics.mode([e[4] for e in escore_notes if e[6] < 80])
melody_chords.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime])
mel_cho.extend([2060+mode_instruments_pitch, 2188+avg_comp_dtime])
melody_chords2.append(mel_cho)
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
cscore = TMIDIX.chordify_score([1000, escore_notes])
pc = cscore[0] # Previous chord
for i, c in enumerate(cscore):
c.sort(key=lambda x: x[6]) # Sorting by patch
#=======================================================
# Outro seq
#if len(cscore) > 256:
# if len(cscore) - i == 64:
# melody_chords.extend([2236])
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(127, c[0][1]-pc[0][1]))
#=======================================================
# Chords...
cpitches = sorted([e[4] for e in c if e[3] != 9])
dpitches = [e[4] for e in c if e[3] == 9]
tones_chord = sorted(set([p % 12 for p in cpitches]))
if tones_chord:
if tones_chord not in TMIDIX.ALL_CHORDS_SORTED:
tones_chord_tok = 644
tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(TMIDIX.advanced_check_and_fix_tones_chord(tones_chord, cpitches[-1]))
else:
tones_chord_tok = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord) # 321
if dpitches:
if tones_chord_tok == 644:
tones_chord_tok = 645
else:
tones_chord_tok += 321
else:
tones_chord_tok = 643 # Drums-only chord
#=======================================================
# Writing chord/time...
melody_chords.extend([tones_chord_tok, delta_time+646])
mel_cho = []
mel_cho.extend([tones_chord_tok, delta_time+646])
#=======================================================
# Notes...
pp = -1
for e in c:
#=======================================================
# Duration
dur = max(0, min(63, int(max(0, e[2] // 4) * 2)))
# Pitch
ptc = max(1, min(127, e[4]))
# Octo-velocity
vel = max(8, min(127, (max(1, e[5] // 8) * 8)))
velocity = round(vel / 15)-1
# Patch
pat = max(0, min(128, e[6]))
if 7 < pat < 80:
ptc += 128
elif 79 < pat < 128:
ptc += 256
elif pat == 128:
ptc += 384
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity # 512
if pat != pp:
melody_chords.extend([pat+774, ptc+904, dur_vel+1416]) # 1928
mel_cho.extend([pat+774, ptc+904, dur_vel+1416])
else:
melody_chords.extend([ptc+904, dur_vel+1416])
mel_cho.extend([ptc+904, dur_vel+1416])
pp = pat
pc = c
melody_chords2.append(mel_cho)
#=======================================================
#melody_chords.extend([2237]) # EOS
#=======================================================
# TOTAL DICTIONARY SIZE 2237+1=2238
#=======================================================
print('Done!')
print('=' * 70)
print('Melody chords length:', len(melody_chords))
print('=' * 70)
#==================================================================
print('=' * 70)
print('Sample output events', melody_chords[:12])
print('=' * 70)
print('Generating...')
output = []
for m in melody_chords2[:input_num_prime_chords]:
output.extend(m)
for ct in tqdm.tqdm(melody_chords2[input_num_prime_chords:input_num_prime_chords+input_num_gen_chords]):
output.extend(ct[:2])
y = 774
while y > 773:
x = torch.LongTensor(output).to(DEVICE)
with ctx:
out = model.generate(x,
1,
filter_logits_fn=top_p,
filter_kwargs={'thres': 0.96},
temperature=0.9,
return_prime=False,
verbose=False)
y = out.tolist()[0][0]
if y > 773:
output.append(y)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
if len(output) != 0:
song = output
song_f = []
time = 0
dur = 4
vel = 90
pitch = 60
channel = 0
patches = [0] * 16
patches[9] = 9
for ss in song:
if 645 < ss < 774:
time += (ss-646)
if 773 < ss < 904:
pat = (ss - 774)
chan = (pat // 8)
if 0 <= chan < 9:
channel = chan
elif 8 < chan < 15:
channel = chan + 1
elif chan == 16:
channel = 9
if 903 < ss < 1416:
pitch = (ss-904) % 128
if 1415 < ss < 1928:
dur = (((ss-1416) // 8)+1) * 2
vel = (((ss-1416) % 8)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, pat])
song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
fn1 = "Ultimate-Chords-Progressions-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Chords Progressions Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches,
timings_multiplier=32
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True, timings_multiplier=32)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('=' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
print('*' * 70)
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Chords Progressions Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Self-correcting multi-instrumental chords-conditioned music RoPE transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Chords-Progressions-Transformer&style=flat)\n\n"
"Check out [Ultimate Chords Progressions Transformer](https://huggingface.co/asigalov61/Ultimate-Chords-Progressions-Transformer) on Hugging Face!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Chords-Progressions-Transformer/blob/main/Chords_Progressions_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_prime_chords = gr.Slider(1, 128, value=32, step=1, label="Number of prime chords")
input_num_gen_chords = gr.Slider(4, 256, value=128, step=1, label="Number of composition chords to generate progression for")
run_btn = gr.Button("Generate Chords", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Generate_Chords, [input_midi, input_num_prime_chords, input_num_gen_chords],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Chords-Progressions-Transformer-MI-Seed-1.mid", 32, 128],
["Chords-Progressions-Transformer-MI-Seed-2.mid", 32, 128],
["Chords-Progressions-Transformer-MI-Seed-3.mid", 32, 128],
["Chords-Progressions-Transformer-MI-Seed-4.mid", 32, 128],
["Chords-Progressions-Transformer-MI-Seed-5.mid", 32, 128],
["Chords-Progressions-Transformer-MI-Seed-6.mid", 32, 128]
],
[input_midi, input_num_prime_chords, input_num_gen_chords],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
Generate_Chords,
cache_examples=True,
cache_mode='eager'
)
app.queue().launch()