Spaces:
Sleeping
Sleeping
import spaces | |
import json | |
import subprocess | |
from llama_cpp import Llama | |
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType | |
from llama_cpp_agent.providers import LlamaCppPythonProvider | |
from llama_cpp_agent.chat_history import BasicChatHistory | |
from llama_cpp_agent.chat_history.messages import Roles | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
llm = None | |
llm_model = None | |
hf_hub_download( | |
repo_id="unsloth/Reflection-Llama-3.1-70B-GGUF", | |
filename="Reflection-Llama-3.1-70B.Q3_K_L.gguf", | |
local_dir = "./models" | |
) | |
hf_hub_download( | |
repo_id="jhofseth/Reflection-Llama-3.1-70B-GGUF", | |
filename="Reflection-Llama-3.1-70B-IQ3_XXS.gguf", | |
local_dir = "./models" | |
) | |
hf_hub_download( | |
repo_id="bartowski/Reflection-Llama-3.1-70B-GGUF", | |
filename="Reflection-Llama-3.1-70B.imatrix", | |
local_dir = "./random" | |
) | |
def get_messages_formatter_type(model_name): | |
if "Llama" in model_name: | |
return MessagesFormatterType.LLAMA_3 | |
else: | |
raise ValueError(f"Unsupported model: {model_name}") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
model, | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
top_k, | |
repeat_penalty, | |
): | |
global llm | |
global llm_model | |
chat_template = get_messages_formatter_type(model) | |
if llm is None or llm_model != model: | |
llm = Llama( | |
model_path=f"models/{model}", | |
flash_attn=True, | |
n_gpu_layers=81, | |
n_batch=1024, | |
n_ctx=8192, | |
) | |
llm_model = model | |
provider = LlamaCppPythonProvider(llm) | |
agent = LlamaCppAgent( | |
provider, | |
system_prompt=f"{system_message}", | |
predefined_messages_formatter_type=chat_template, | |
debug_output=True | |
) | |
settings = provider.get_provider_default_settings() | |
settings.temperature = temperature | |
settings.top_k = top_k | |
settings.top_p = top_p | |
settings.max_tokens = max_tokens | |
settings.repeat_penalty = repeat_penalty | |
settings.stream = True | |
messages = BasicChatHistory() | |
for msn in history: | |
user = { | |
'role': Roles.user, | |
'content': msn[0] | |
} | |
assistant = { | |
'role': Roles.assistant, | |
'content': msn[1] | |
} | |
messages.add_message(user) | |
messages.add_message(assistant) | |
stream = agent.get_chat_response( | |
message, | |
llm_sampling_settings=settings, | |
chat_history=messages, | |
returns_streaming_generator=True, | |
print_output=False | |
) | |
outputs = "" | |
for output in stream: | |
outputs += output | |
yield outputs | |
description = """<p><center> | |
<a href="https://huggingface.co/mattshumer/ref_70_e3" target="_blank">[Reflection Llama 3.1 70B Correct Weights]</a> | |
<a href="https://huggingface.co/mattshumer/Reflection-Llama-3.1-70B" target="_blank">[Old Repo]</a> | |
<a href="https://huggingface.co/unsloth/Reflection-Llama-3.1-70B-GGUF" target="_blank">[Reflection-Llama-3.1-70B-GGUF]</a> | |
</center></p> | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Dropdown([ | |
"Reflection-Llama-3.1-70B.Q3_K_L.gguf", | |
"Reflection-Llama-3.1-70B-IQ3_XXS.gguf" | |
], | |
value="Reflection-Llama-3.1-70B.Q3_K_L.gguf", | |
label="Model" | |
), | |
gr.Textbox(value="You are a world-class AI system, capable of complex reasoning and reflection. Reason through the query inside <thinking> tags, and then provide your final response inside <output> tags. If you detect that you made a mistake in your reasoning at any point, correct yourself inside <reflection> tags.", label="System message"), | |
gr.Slider(minimum=1, maximum=8192, value=2048, step=1, label="Max tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
), | |
gr.Slider( | |
minimum=0, | |
maximum=100, | |
value=40, | |
step=1, | |
label="Top-k", | |
), | |
gr.Slider( | |
minimum=0.0, | |
maximum=2.0, | |
value=1.1, | |
step=0.1, | |
label="Repetition penalty", | |
), | |
], | |
theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( | |
body_background_fill_dark="#16141c", | |
block_background_fill_dark="#16141c", | |
block_border_width="1px", | |
block_title_background_fill_dark="#1e1c26", | |
input_background_fill_dark="#292733", | |
button_secondary_background_fill_dark="#24212b", | |
border_color_accent_dark="#343140", | |
border_color_primary_dark="#343140", | |
background_fill_secondary_dark="#16141c", | |
color_accent_soft_dark="transparent", | |
code_background_fill_dark="#292733", | |
), | |
retry_btn="Retry", | |
undo_btn="Undo", | |
clear_btn="Clear", | |
submit_btn="Send", | |
title="Reflection Llama-3.1 70B", | |
description=description, | |
chatbot=gr.Chatbot( | |
scale=1, | |
likeable=False, | |
show_copy_button=True | |
) | |
) | |
if __name__ == "__main__": | |
demo.launch() |