File size: 8,280 Bytes
0ba78e9
fd18ef6
0ba78e9
0d5e0f7
0ba78e9
6c14077
0ba78e9
6c14077
0d5e0f7
6c14077
0d5e0f7
0ba78e9
 
0d5e0f7
0ba78e9
 
 
6c14077
0d5e0f7
 
294f139
 
 
d7705b9
294f139
 
 
 
fd18ef6
294f139
 
6c14077
 
 
d7705b9
6c14077
 
 
 
fd18ef6
6c14077
 
fd18ef6
 
da19d23
 
 
 
 
 
 
0153e97
4f5bbb3
 
d7705b9
da19d23
 
294f139
6c14077
d7705b9
 
 
 
 
 
 
 
f574f70
0d5e0f7
fd18ef6
6c14077
 
 
0ba78e9
2859204
6c14077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294f139
0153e97
6c14077
 
294f139
 
 
 
 
da19d23
 
6c14077
fd18ef6
294f139
fd18ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
294f139
fd18ef6
 
 
 
 
 
0d5e0f7
2859204
 
6c14077
0d5e0f7
6c14077
 
 
da19d23
0d5e0f7
fd18ef6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import uuid
from pathlib import Path

import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets

from utils import get_compatible_models, get_metadata, http_get, http_post

if Path(".env").is_file():
    load_dotenv(".env")

HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")


TASK_TO_ID = {
    "binary_classification": 1,
    "multi_class_classification": 2,
    # "multi_label_classification": 3, # Not fully supported in AutoTrain
    "entity_extraction": 4,
    "extractive_question_answering": 5,
    "translation": 6,
    "summarization": 8,
    # "single_column_regression": 10,
}

AUTOTRAIN_TASK_TO_HUB_TASK = {
    "binary_classification": "text-classification",
    "multi_class_classification": "text-classification",
    # "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
    "entity_extraction": "token-classification",
    "extractive_question_answering": "question-answering",
    "translation": "translation",
    "summarization": "summarization",
    # "single_column_regression": 10,
}

HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}

###########
### APP ###
###########
st.title("Evaluation as a Service")
st.markdown(
    """
    Welcome to Hugging Face's Evaluation as a Service! This application allows
    you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
    select the dataset and configuration below. The results of your evaluation
    will be displayed on the public leaderboard
    [here](https://huggingface.co/spaces/autoevaluate/leaderboards).
    """
)

all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
    if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
        default_dataset = query_params["dataset"][0]

selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})


# TODO: In general this will be a list of multiple configs => need to generalise logic here
metadata = get_metadata(selected_dataset)
if metadata is None:
    st.warning("No evaluation metadata found. Please configure the evaluation job below.")

with st.expander("Advanced configuration"):
    ## Select task
    selected_task = st.selectbox("Select a task", list(AUTOTRAIN_TASK_TO_HUB_TASK.values()))
    ### Select config
    configs = get_dataset_config_names(selected_dataset)
    selected_config = st.selectbox("Select a config", configs)

    ## Select splits
    splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
    if splits_resp.status_code == 200:
        split_names = []
        all_splits = splits_resp.json()
        print(all_splits)
        for split in all_splits["splits"]:
            print(selected_config)
            if split["config"] == selected_config:
                split_names.append(split["split"])

        selected_split = st.selectbox("Select a split", split_names)  # , index=split_names.index(eval_split))

    ## Show columns
    rows_resp = http_get(
        path="/rows",
        domain="https://datasets-preview.huggingface.tech",
        params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
    ).json()
    columns = rows_resp["columns"]
    col_names = []
    for c in columns:
        col_names.append(c["column"]["name"])
    # splits = metadata[0]["splits"]
    # split_names = list(splits.values())
    # eval_split = splits.get("eval_split", split_names[0])

    # selected_split = st.selectbox("Select a split", split_names, index=split_names.index(eval_split))

    # TODO: add a function to handle the mapping task <--> column mapping
    # col_mapping = metadata[0]["col_mapping"]
    # col_names = list(col_mapping.keys())

    # TODO: figure out how to get all dataset column names (i.e. features) without download dataset itself
    st.markdown("**Map your data columns**")
    col1, col2 = st.columns(2)

    # TODO: find a better way to layout these items
    # TODO: propagate this information to payload
    # TODO: make it task specific
    col_mapping = {}
    with col1:
        if selected_task == "text-classification":
            st.markdown("`text` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`target` column")
        elif selected_task == "question-answering":
            st.markdown("`context` column")
            st.text("")
            st.text("")
            st.text("")
            st.text("")
            st.markdown("`question` column")
    with col2:
        text_col = st.selectbox("This column should contain the text you want to classify", col_names, index=0)
        target_col = st.selectbox(
            "This column should contain the labels you want to assign to the text", col_names, index=1
        )
        col_mapping[text_col] = "text"
        col_mapping[target_col] = "target"

with st.form(key="form"):

    compatible_models = get_compatible_models(selected_task, selected_dataset)

    selected_models = st.multiselect(
        "Select the models you wish to evaluate", compatible_models
    )  # , compatible_models[0])
    submit_button = st.form_submit_button("Make submission")

    if submit_button:
        project_id = str(uuid.uuid4())[:3]
        autotrain_task_name = HUB_TASK_TO_AUTOTRAIN_TASK[selected_task]
        payload = {
            "username": AUTOTRAIN_USERNAME,
            "proj_name": f"my-eval-project-{project_id}",
            "task": TASK_TO_ID[autotrain_task_name],
            "config": {
                "language": "en",
                "max_models": 5,
                "instance": {
                    "provider": "aws",
                    "instance_type": "ml.g4dn.4xlarge",
                    "max_runtime_seconds": 172800,
                    "num_instances": 1,
                    "disk_size_gb": 150,
                },
                "evaluation": {
                    "metrics": [],
                    "models": selected_models,
                },
            },
        }
        project_json_resp = http_post(
            path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
        ).json()
        print(project_json_resp)

        if project_json_resp["created"]:
            payload = {
                "split": 4,
                "col_mapping": col_mapping,
                "load_config": {"max_size_bytes": 0, "shuffle": False},
            }
            data_json_resp = http_post(
                path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
                payload=payload,
                token=HF_TOKEN,
                domain=AUTOTRAIN_BACKEND_API,
                params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
            ).json()
            print(data_json_resp)
            if data_json_resp["download_status"] == 1:
                train_json_resp = http_get(
                    path=f"/projects/{project_json_resp['id']}/data/start_process",
                    token=HF_TOKEN,
                    domain=AUTOTRAIN_BACKEND_API,
                ).json()
                print(train_json_resp)
                if train_json_resp["success"]:
                    st.success(f"βœ… Successfully submitted evaluation job with project ID {project_id}")
                    st.markdown(
                        f"""
                    Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:

                    * πŸ“Š Click [here](https://huggingface.co/spaces/huggingface/leaderboards) to view the results from your submission
                    """
                    )
                else:
                    st.error("πŸ™ˆ Oh noes, there was an error submitting your submission!")