Spaces:
Runtime error
Runtime error
File size: 2,048 Bytes
1394a88 af2acd4 c671908 af2acd4 d658c8a af2acd4 1edd506 af2acd4 1394a88 326ac2a 1edd506 1394a88 af2acd4 1394a88 2f16764 af2acd4 2f16764 c671908 1edd506 1394a88 c671908 1394a88 c671908 1edd506 c671908 1394a88 1edd506 1394a88 1edd506 1394a88 c671908 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import copy
from dataclasses import dataclass
import streamlit as st
from huggingface_hub import DatasetFilter, HfApi
from huggingface_hub.hf_api import DatasetInfo
@dataclass(frozen=True, eq=True)
class EvaluationInfo:
task: str
model: str
dataset_name: str
dataset_config: str
dataset_split: str
metrics: set
def create_evaluation_info(dataset_info: DatasetInfo) -> int:
if dataset_info.cardData is not None:
metadata = dataset_info.cardData["eval_info"]
metadata.pop("col_mapping", None)
# TODO(lewtun): populate dataset cards with metric info
if "metrics" not in metadata:
metadata["metrics"] = frozenset()
else:
metadata["metrics"] = frozenset(metadata["metrics"])
return EvaluationInfo(**metadata)
def get_evaluation_infos():
evaluation_datasets = []
filt = DatasetFilter(author="autoevaluate")
autoevaluate_datasets = HfApi().list_datasets(filter=filt, full=True)
for dset in autoevaluate_datasets:
try:
evaluation_datasets.append(create_evaluation_info(dset))
except Exception as e:
print(f"Error processing dataset {dset}: {e}")
return evaluation_datasets
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split, metrics):
evaluation_infos = get_evaluation_infos()
models_to_filter = copy.copy(models)
for model in models_to_filter:
evaluation_info = EvaluationInfo(
task=task,
model=model,
dataset_name=dataset_name,
dataset_config=dataset_config,
dataset_split=dataset_split,
metrics=frozenset(metrics),
)
if evaluation_info in evaluation_infos:
st.info(
f"Model [`{model}`](https://huggingface.co/{model}) has already been evaluated on this configuration. \
This model will be excluded from the evaluation job..."
)
models.remove(model)
return models
|