model-evaluator / app.py
lewtun's picture
lewtun HF staff
Refactor
c671908
raw
history blame
13 kB
import os
import uuid
from pathlib import Path
import pandas as pd
import streamlit as st
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from evaluation import EvaluationInfo, filter_evaluated_models
from utils import (get_compatible_models, get_key, get_metadata, http_get,
http_post)
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
TASK_TO_ID = {
"binary_classification": 1,
"multi_class_classification": 2,
# "multi_label_classification": 3, # Not fully supported in AutoTrain
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
}
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
###########
### APP ###
###########
st.title("Evaluation as a Service")
st.markdown(
"""
Welcome to Hugging Face's Evaluation as a Service! This application allows
you to evaluate any πŸ€— Transformers model with a dataset on the Hub. Please
select the dataset and configuration below. The results of your evaluation
will be displayed on the public leaderboard
[here](https://huggingface.co/spaces/autoevaluate/leaderboards).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
default_dataset = all_datasets[0]
if "dataset" in query_params:
if len(query_params["dataset"]) > 0 and query_params["dataset"][0] in all_datasets:
default_dataset = query_params["dataset"][0]
selected_dataset = st.selectbox("Select a dataset", all_datasets, index=all_datasets.index(default_dataset))
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
metadata = get_metadata(selected_dataset)
print(metadata)
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
## Select task
selected_task = st.selectbox(
"Select a task",
SUPPORTED_TASKS,
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
)
### Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox("Select a config", configs)
## Select splits
splits_resp = http_get(path="/splits", domain=DATASETS_PREVIEW_API, params={"dataset": selected_dataset})
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
for split in all_splits["splits"]:
if split["config"] == selected_config:
split_names.append(split["split"])
selected_split = st.selectbox(
"Select a split",
split_names,
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
)
## Select columns
rows_resp = http_get(
path="/rows",
domain=DATASETS_PREVIEW_API,
params={"dataset": selected_dataset, "config": selected_config, "split": selected_split},
).json()
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
st.markdown("**Map your data columns**")
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
col_mapping = {}
if selected_task in ["binary_classification", "multi_class_classification"]:
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to classify",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the labels you want to assign to the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "entity_extraction":
with col1:
st.markdown("`tokens` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`tags` column")
with col2:
tokens_col = st.selectbox(
"This column should contain the parts of the text (as an array of tokens) you want to assign labels to",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
)
tags_col = st.selectbox(
"This column should contain the labels to associate to each part of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
)
col_mapping[tokens_col] = "tokens"
col_mapping[tags_col] = "tags"
elif selected_task == "translation":
with col1:
st.markdown("`source` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to translate",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example translation of the source text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "source"
col_mapping[target_col] = "target"
elif selected_task == "summarization":
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text you want to summarize",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain an example summarization of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "extractive_question_answering":
col_mapping = metadata[0]["col_mapping"]
# Hub YAML parser converts periods to hyphens, so we remap them here
col_mapping = {k.replace("-", "."): v.replace("-", ".") for k, v in col_mapping.items()}
with col1:
st.markdown("`context` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`question` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.answer_start` column")
with col2:
context_col = st.selectbox(
"This column should contain the question's context",
col_names,
index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0,
)
question_col = st.selectbox(
"This column should contain the question to be answered, given the context",
col_names,
index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0,
)
answers_text_col = st.selectbox(
"This column should contain example answers to the question, extracted from the context",
col_names,
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
)
answers_start_col = st.selectbox(
"This column should contain the indices in the context of the first character of each answers.text",
col_names,
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
)
col_mapping[context_col] = "context"
col_mapping[question_col] = "question"
col_mapping[answers_text_col] = "answers.text"
col_mapping[answers_start_col] = "answers.answer_start"
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, selected_dataset)
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
print("Selected models:", selected_models)
selected_models = filter_evaluated_models(
selected_models, selected_task, selected_dataset, selected_config, selected_split
)
print("Selected models:", selected_models)
submit_button = st.form_submit_button("Make submission")
if submit_button:
if len(selected_models) > 0:
project_id = str(uuid.uuid4())[:3]
payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": f"my-eval-project-{project_id}",
"task": TASK_TO_ID[selected_task],
"config": {
"language": "en",
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"evaluation": {
"metrics": [],
"models": selected_models,
},
},
}
print(f"Payload: {payload}")
project_json_resp = http_post(
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
).json()
print(project_json_resp)
if project_json_resp["created"]:
payload = {
"split": 4, # use "auto" split choice in AutoTrain
"col_mapping": col_mapping,
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
payload=payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
).json()
print(data_json_resp)
if data_json_resp["download_status"] == 1:
train_json_resp = http_get(
path=f"/projects/{project_json_resp['id']}/data/start_process",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(train_json_resp)
if train_json_resp["success"]:
st.success(f"βœ… Successfully submitted evaluation job with project ID {project_id}")
st.markdown(
f"""
Evaluation takes appoximately 1 hour to complete, so grab a β˜• or 🍡 while you wait:
* πŸ“Š Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the results from your submission
"""
)
else:
st.error("πŸ™ˆ Oh noes, there was an error submitting your evaluation job!")
else:
st.warning("⚠️ No models were selected for evaluation!")