Spaces:
Runtime error
Runtime error
Add cross-linking of QA models
Browse files
app.py
CHANGED
@@ -67,6 +67,7 @@ def get_supported_metrics():
|
|
67 |
# in the same environment. Refactor to avoid needing to actually load
|
68 |
# the metric.
|
69 |
try:
|
|
|
70 |
metric_func = load(metric)
|
71 |
except Exception as e:
|
72 |
print(e)
|
@@ -103,7 +104,7 @@ st.markdown(
|
|
103 |
Welcome to Hugging Face's automatic model evaluator! This application allows
|
104 |
you to evaluate 🤗 Transformers
|
105 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
106 |
-
across a wide variety of datasets on the Hub
|
107 |
the dataset and configuration below. The results of your evaluation will be
|
108 |
displayed on the [public
|
109 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
@@ -345,8 +346,12 @@ with st.expander("Advanced configuration"):
|
|
345 |
)
|
346 |
|
347 |
with st.form(key="form"):
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
-
compatible_models = get_compatible_models(selected_task, selected_dataset)
|
350 |
selected_models = st.multiselect(
|
351 |
"Select the models you wish to evaluate",
|
352 |
compatible_models,
|
|
|
67 |
# in the same environment. Refactor to avoid needing to actually load
|
68 |
# the metric.
|
69 |
try:
|
70 |
+
print(f"INFO -- Attempting to load metric: {metric}")
|
71 |
metric_func = load(metric)
|
72 |
except Exception as e:
|
73 |
print(e)
|
|
|
104 |
Welcome to Hugging Face's automatic model evaluator! This application allows
|
105 |
you to evaluate 🤗 Transformers
|
106 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
107 |
+
across a wide variety of datasets on the Hub. Please select
|
108 |
the dataset and configuration below. The results of your evaluation will be
|
109 |
displayed on the [public
|
110 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
|
|
346 |
)
|
347 |
|
348 |
with st.form(key="form"):
|
349 |
+
# Grab all models fine-tuned on SQuAD for question answering tasks
|
350 |
+
if selected_task == "extractive_question_answering":
|
351 |
+
compatible_models = get_compatible_models(selected_task, [selected_dataset, "squad", "squad_v2"])
|
352 |
+
else:
|
353 |
+
compatible_models = get_compatible_models(selected_task, [selected_dataset])
|
354 |
|
|
|
355 |
selected_models = st.multiselect(
|
356 |
"Select the models you wish to evaluate",
|
357 |
compatible_models,
|
utils.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Dict, Union
|
2 |
|
3 |
import jsonlines
|
4 |
import requests
|
@@ -19,9 +19,6 @@ HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items(
|
|
19 |
LOGS_REPO = "evaluation-job-logs"
|
20 |
|
21 |
|
22 |
-
api = HfApi()
|
23 |
-
|
24 |
-
|
25 |
def get_auth_headers(token: str, prefix: str = "autonlp"):
|
26 |
return {"Authorization": f"{prefix} {token}"}
|
27 |
|
@@ -65,14 +62,26 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
65 |
return None
|
66 |
|
67 |
|
68 |
-
def get_compatible_models(task,
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return sorted([model.modelId for model in compatible_models])
|
77 |
|
78 |
|
|
|
1 |
+
from typing import Dict, List, Union
|
2 |
|
3 |
import jsonlines
|
4 |
import requests
|
|
|
19 |
LOGS_REPO = "evaluation-job-logs"
|
20 |
|
21 |
|
|
|
|
|
|
|
22 |
def get_auth_headers(token: str, prefix: str = "autonlp"):
|
23 |
return {"Authorization": f"{prefix} {token}"}
|
24 |
|
|
|
62 |
return None
|
63 |
|
64 |
|
65 |
+
def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]:
|
66 |
+
"""
|
67 |
+
Returns all model IDs that are compatible with the given task and dataset names.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
task (`str`): The task to search for.
|
71 |
+
dataset_names (`List[str]`): A list of dataset names to search for.
|
72 |
+
|
73 |
+
Returns:
|
74 |
+
A list of model IDs, sorted alphabetically.
|
75 |
+
"""
|
76 |
+
# TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain
|
77 |
+
compatible_models = []
|
78 |
+
for dataset_id in dataset_ids:
|
79 |
+
model_filter = ModelFilter(
|
80 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
81 |
+
trained_dataset=dataset_id,
|
82 |
+
library=["transformers", "pytorch"],
|
83 |
+
)
|
84 |
+
compatible_models.extend(HfApi().list_models(filter=model_filter))
|
85 |
return sorted([model.modelId for model in compatible_models])
|
86 |
|
87 |
|