Spaces:
Runtime error
Runtime error
mehranandi
commited on
Commit
·
77be950
1
Parent(s):
4ff54dd
Delete app.py
Browse files
app.py
DELETED
@@ -1,693 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
import pandas as pd
|
6 |
-
import streamlit as st
|
7 |
-
import yaml
|
8 |
-
from datasets import get_dataset_config_names
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
from huggingface_hub import list_datasets
|
11 |
-
|
12 |
-
from evaluation import filter_evaluated_models
|
13 |
-
from utils import (
|
14 |
-
AUTOTRAIN_TASK_TO_HUB_TASK,
|
15 |
-
commit_evaluation_log,
|
16 |
-
create_autotrain_project_name,
|
17 |
-
format_col_mapping,
|
18 |
-
get_compatible_models,
|
19 |
-
get_config_metadata,
|
20 |
-
get_dataset_card_url,
|
21 |
-
get_key,
|
22 |
-
get_metadata,
|
23 |
-
http_get,
|
24 |
-
http_post,
|
25 |
-
)
|
26 |
-
|
27 |
-
if Path(".env").is_file():
|
28 |
-
load_dotenv(".env")
|
29 |
-
|
30 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
31 |
-
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
|
32 |
-
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
|
33 |
-
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
|
34 |
-
|
35 |
-
# Put image tasks on top
|
36 |
-
TASK_TO_ID = {
|
37 |
-
"image_binary_classification": 17,
|
38 |
-
"image_multi_class_classification": 18,
|
39 |
-
"binary_classification": 1,
|
40 |
-
"multi_class_classification": 2,
|
41 |
-
"natural_language_inference": 22,
|
42 |
-
"entity_extraction": 4,
|
43 |
-
"extractive_question_answering": 5,
|
44 |
-
"translation": 6,
|
45 |
-
"summarization": 8,
|
46 |
-
"text_zero_shot_classification": 23,
|
47 |
-
}
|
48 |
-
|
49 |
-
TASK_TO_DEFAULT_METRICS = {
|
50 |
-
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
51 |
-
"multi_class_classification": [
|
52 |
-
"f1",
|
53 |
-
"precision",
|
54 |
-
"recall",
|
55 |
-
"accuracy",
|
56 |
-
],
|
57 |
-
"natural_language_inference": ["f1", "precision", "recall", "auc", "accuracy"],
|
58 |
-
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
|
59 |
-
"extractive_question_answering": ["f1", "exact_match"],
|
60 |
-
"translation": ["sacrebleu"],
|
61 |
-
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
|
62 |
-
"image_binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
|
63 |
-
"image_multi_class_classification": [
|
64 |
-
"f1",
|
65 |
-
"precision",
|
66 |
-
"recall",
|
67 |
-
"accuracy",
|
68 |
-
],
|
69 |
-
"text_zero_shot_classification": ["accuracy", "loss"],
|
70 |
-
}
|
71 |
-
|
72 |
-
AUTOTRAIN_TASK_TO_LANG = {
|
73 |
-
"translation": "en2de",
|
74 |
-
"image_binary_classification": "unk",
|
75 |
-
"image_multi_class_classification": "unk",
|
76 |
-
}
|
77 |
-
|
78 |
-
AUTOTRAIN_MACHINE = {"text_zero_shot_classification": "r5.16x"}
|
79 |
-
|
80 |
-
|
81 |
-
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
82 |
-
|
83 |
-
# Extracted from utils.get_supported_metrics
|
84 |
-
# Hardcoded for now due to speed / caching constraints
|
85 |
-
SUPPORTED_METRICS = [
|
86 |
-
"accuracy",
|
87 |
-
"bertscore",
|
88 |
-
"bleu",
|
89 |
-
"cer",
|
90 |
-
"chrf",
|
91 |
-
"code_eval",
|
92 |
-
"comet",
|
93 |
-
"competition_math",
|
94 |
-
"coval",
|
95 |
-
"cuad",
|
96 |
-
"exact_match",
|
97 |
-
"f1",
|
98 |
-
"frugalscore",
|
99 |
-
"google_bleu",
|
100 |
-
"mae",
|
101 |
-
"mahalanobis",
|
102 |
-
"matthews_correlation",
|
103 |
-
"mean_iou",
|
104 |
-
"meteor",
|
105 |
-
"mse",
|
106 |
-
"pearsonr",
|
107 |
-
"perplexity",
|
108 |
-
"precision",
|
109 |
-
"recall",
|
110 |
-
"roc_auc",
|
111 |
-
"rouge",
|
112 |
-
"sacrebleu",
|
113 |
-
"sari",
|
114 |
-
"seqeval",
|
115 |
-
"spearmanr",
|
116 |
-
"squad",
|
117 |
-
"squad_v2",
|
118 |
-
"ter",
|
119 |
-
"trec_eval",
|
120 |
-
"wer",
|
121 |
-
"wiki_split",
|
122 |
-
"xnli",
|
123 |
-
"angelina-wang/directional_bias_amplification",
|
124 |
-
"jordyvl/ece",
|
125 |
-
"lvwerra/ai4code",
|
126 |
-
"lvwerra/amex",
|
127 |
-
]
|
128 |
-
|
129 |
-
|
130 |
-
#######
|
131 |
-
# APP #
|
132 |
-
#######
|
133 |
-
st.title("Evaluation on the Hub")
|
134 |
-
st.markdown(
|
135 |
-
"""
|
136 |
-
Welcome to Hugging Face's automatic model evaluator 👋!
|
137 |
-
|
138 |
-
This application allows you to evaluate 🤗 Transformers
|
139 |
-
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
140 |
-
across a wide variety of [datasets](https://huggingface.co/datasets) on the
|
141 |
-
Hub. Please select the dataset and configuration below. The results of your
|
142 |
-
evaluation will be displayed on the [public
|
143 |
-
leaderboards](https://huggingface.co/spaces/autoevaluate/leaderboards). For
|
144 |
-
more details, check out out our [blog
|
145 |
-
post](https://huggingface.co/blog/eval-on-the-hub).
|
146 |
-
"""
|
147 |
-
)
|
148 |
-
|
149 |
-
all_datasets = [d.id for d in list_datasets()]
|
150 |
-
query_params = st.experimental_get_query_params()
|
151 |
-
if "first_query_params" not in st.session_state:
|
152 |
-
st.session_state.first_query_params = query_params
|
153 |
-
first_query_params = st.session_state.first_query_params
|
154 |
-
default_dataset = all_datasets[0]
|
155 |
-
if "dataset" in first_query_params:
|
156 |
-
if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in all_datasets:
|
157 |
-
default_dataset = first_query_params["dataset"][0]
|
158 |
-
|
159 |
-
selected_dataset = st.selectbox(
|
160 |
-
"Select a dataset",
|
161 |
-
all_datasets,
|
162 |
-
index=all_datasets.index(default_dataset),
|
163 |
-
help="""Datasets with metadata can be evaluated with 1-click. Configure an evaluation job to add \
|
164 |
-
new metadata to a dataset card.""",
|
165 |
-
)
|
166 |
-
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
|
167 |
-
|
168 |
-
# Check if selected dataset can be streamed
|
169 |
-
is_valid_dataset = http_get(
|
170 |
-
path="/is-valid",
|
171 |
-
domain=DATASETS_PREVIEW_API,
|
172 |
-
params={"dataset": selected_dataset},
|
173 |
-
).json()
|
174 |
-
if is_valid_dataset["viewer"] is False and is_valid_dataset["preview"] is False:
|
175 |
-
st.error(
|
176 |
-
"""The dataset you selected is not currently supported. Open a \
|
177 |
-
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) for support."""
|
178 |
-
)
|
179 |
-
|
180 |
-
metadata = get_metadata(selected_dataset, token=HF_TOKEN)
|
181 |
-
print(f"INFO -- Dataset metadata: {metadata}")
|
182 |
-
if metadata is None:
|
183 |
-
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
184 |
-
|
185 |
-
with st.expander("Advanced configuration"):
|
186 |
-
# Select task
|
187 |
-
selected_task = st.selectbox(
|
188 |
-
"Select a task",
|
189 |
-
SUPPORTED_TASKS,
|
190 |
-
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
191 |
-
help="""Don't see your favourite task here? Open a \
|
192 |
-
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) to request it!""",
|
193 |
-
)
|
194 |
-
# Select config
|
195 |
-
configs = get_dataset_config_names(selected_dataset)
|
196 |
-
selected_config = st.selectbox(
|
197 |
-
"Select a config",
|
198 |
-
configs,
|
199 |
-
help="""Some datasets contain several sub-datasets, known as _configurations_. \
|
200 |
-
Select one to evaluate your models on. \
|
201 |
-
See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
|
202 |
-
""",
|
203 |
-
)
|
204 |
-
# Some datasets have multiple metadata (one per config), so we grab the one associated with the selected config
|
205 |
-
config_metadata = get_config_metadata(selected_config, metadata)
|
206 |
-
print(f"INFO -- Config metadata: {config_metadata}")
|
207 |
-
|
208 |
-
# Select splits
|
209 |
-
splits_resp = http_get(
|
210 |
-
path="/splits",
|
211 |
-
domain=DATASETS_PREVIEW_API,
|
212 |
-
params={"dataset": selected_dataset},
|
213 |
-
)
|
214 |
-
if splits_resp.status_code == 200:
|
215 |
-
split_names = []
|
216 |
-
all_splits = splits_resp.json()
|
217 |
-
for split in all_splits["splits"]:
|
218 |
-
if split["config"] == selected_config:
|
219 |
-
split_names.append(split["split"])
|
220 |
-
|
221 |
-
if config_metadata is not None:
|
222 |
-
eval_split = config_metadata["splits"].get("eval_split", None)
|
223 |
-
else:
|
224 |
-
eval_split = None
|
225 |
-
selected_split = st.selectbox(
|
226 |
-
"Select a split",
|
227 |
-
split_names,
|
228 |
-
index=split_names.index(eval_split) if eval_split is not None else 0,
|
229 |
-
help="Be wary when evaluating models on the `train` split.",
|
230 |
-
)
|
231 |
-
|
232 |
-
# Select columns
|
233 |
-
rows_resp = http_get(
|
234 |
-
path="/first-rows",
|
235 |
-
domain=DATASETS_PREVIEW_API,
|
236 |
-
params={
|
237 |
-
"dataset": selected_dataset,
|
238 |
-
"config": selected_config,
|
239 |
-
"split": selected_split,
|
240 |
-
},
|
241 |
-
).json()
|
242 |
-
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
243 |
-
|
244 |
-
st.markdown("**Map your dataset columns**")
|
245 |
-
st.markdown(
|
246 |
-
"""The model evaluator uses a standardised set of column names for the input examples and labels. \
|
247 |
-
Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
|
248 |
-
)
|
249 |
-
col1, col2 = st.columns(2)
|
250 |
-
|
251 |
-
# TODO: find a better way to layout these items
|
252 |
-
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
|
253 |
-
col_mapping = {}
|
254 |
-
if selected_task in ["binary_classification", "multi_class_classification"]:
|
255 |
-
with col1:
|
256 |
-
st.markdown("`text` column")
|
257 |
-
st.text("")
|
258 |
-
st.text("")
|
259 |
-
st.text("")
|
260 |
-
st.text("")
|
261 |
-
st.markdown("`target` column")
|
262 |
-
with col2:
|
263 |
-
text_col = st.selectbox(
|
264 |
-
"This column should contain the text to be classified",
|
265 |
-
col_names,
|
266 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
267 |
-
if config_metadata is not None
|
268 |
-
else 0,
|
269 |
-
)
|
270 |
-
target_col = st.selectbox(
|
271 |
-
"This column should contain the labels associated with the text",
|
272 |
-
col_names,
|
273 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
274 |
-
if config_metadata is not None
|
275 |
-
else 0,
|
276 |
-
)
|
277 |
-
col_mapping[text_col] = "text"
|
278 |
-
col_mapping[target_col] = "target"
|
279 |
-
|
280 |
-
elif selected_task == "text_zero_shot_classification":
|
281 |
-
with col1:
|
282 |
-
st.markdown("`text` column")
|
283 |
-
st.text("")
|
284 |
-
st.text("")
|
285 |
-
st.text("")
|
286 |
-
st.text("")
|
287 |
-
st.markdown("`classes` column")
|
288 |
-
st.text("")
|
289 |
-
st.text("")
|
290 |
-
st.text("")
|
291 |
-
st.text("")
|
292 |
-
st.markdown("`target` column")
|
293 |
-
with col2:
|
294 |
-
text_col = st.selectbox(
|
295 |
-
"This column should contain the text to be classified",
|
296 |
-
col_names,
|
297 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
298 |
-
if config_metadata is not None
|
299 |
-
else 0,
|
300 |
-
)
|
301 |
-
classes_col = st.selectbox(
|
302 |
-
"This column should contain the classes associated with the text",
|
303 |
-
col_names,
|
304 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "classes"))
|
305 |
-
if config_metadata is not None
|
306 |
-
else 0,
|
307 |
-
)
|
308 |
-
target_col = st.selectbox(
|
309 |
-
"This column should contain the index of the correct class",
|
310 |
-
col_names,
|
311 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
312 |
-
if config_metadata is not None
|
313 |
-
else 0,
|
314 |
-
)
|
315 |
-
col_mapping[text_col] = "text"
|
316 |
-
col_mapping[classes_col] = "classes"
|
317 |
-
col_mapping[target_col] = "target"
|
318 |
-
|
319 |
-
if selected_task in ["natural_language_inference"]:
|
320 |
-
config_metadata = get_config_metadata(selected_config, metadata)
|
321 |
-
with col1:
|
322 |
-
st.markdown("`text1` column")
|
323 |
-
st.text("")
|
324 |
-
st.text("")
|
325 |
-
st.text("")
|
326 |
-
st.text("")
|
327 |
-
st.text("")
|
328 |
-
st.markdown("`text2` column")
|
329 |
-
st.text("")
|
330 |
-
st.text("")
|
331 |
-
st.text("")
|
332 |
-
st.text("")
|
333 |
-
st.text("")
|
334 |
-
st.markdown("`target` column")
|
335 |
-
with col2:
|
336 |
-
text1_col = st.selectbox(
|
337 |
-
"This column should contain the first text passage to be classified",
|
338 |
-
col_names,
|
339 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text1"))
|
340 |
-
if config_metadata is not None
|
341 |
-
else 0,
|
342 |
-
)
|
343 |
-
text2_col = st.selectbox(
|
344 |
-
"This column should contain the second text passage to be classified",
|
345 |
-
col_names,
|
346 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text2"))
|
347 |
-
if config_metadata is not None
|
348 |
-
else 0,
|
349 |
-
)
|
350 |
-
target_col = st.selectbox(
|
351 |
-
"This column should contain the labels associated with the text",
|
352 |
-
col_names,
|
353 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
354 |
-
if config_metadata is not None
|
355 |
-
else 0,
|
356 |
-
)
|
357 |
-
col_mapping[text1_col] = "text1"
|
358 |
-
col_mapping[text2_col] = "text2"
|
359 |
-
col_mapping[target_col] = "target"
|
360 |
-
|
361 |
-
elif selected_task == "entity_extraction":
|
362 |
-
with col1:
|
363 |
-
st.markdown("`tokens` column")
|
364 |
-
st.text("")
|
365 |
-
st.text("")
|
366 |
-
st.text("")
|
367 |
-
st.text("")
|
368 |
-
st.markdown("`tags` column")
|
369 |
-
with col2:
|
370 |
-
tokens_col = st.selectbox(
|
371 |
-
"This column should contain the array of tokens to be classified",
|
372 |
-
col_names,
|
373 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "tokens"))
|
374 |
-
if config_metadata is not None
|
375 |
-
else 0,
|
376 |
-
)
|
377 |
-
tags_col = st.selectbox(
|
378 |
-
"This column should contain the labels associated with each part of the text",
|
379 |
-
col_names,
|
380 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "tags"))
|
381 |
-
if config_metadata is not None
|
382 |
-
else 0,
|
383 |
-
)
|
384 |
-
col_mapping[tokens_col] = "tokens"
|
385 |
-
col_mapping[tags_col] = "tags"
|
386 |
-
|
387 |
-
elif selected_task == "translation":
|
388 |
-
with col1:
|
389 |
-
st.markdown("`source` column")
|
390 |
-
st.text("")
|
391 |
-
st.text("")
|
392 |
-
st.text("")
|
393 |
-
st.text("")
|
394 |
-
st.markdown("`target` column")
|
395 |
-
with col2:
|
396 |
-
text_col = st.selectbox(
|
397 |
-
"This column should contain the text to be translated",
|
398 |
-
col_names,
|
399 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "source"))
|
400 |
-
if config_metadata is not None
|
401 |
-
else 0,
|
402 |
-
)
|
403 |
-
target_col = st.selectbox(
|
404 |
-
"This column should contain the target translation",
|
405 |
-
col_names,
|
406 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
407 |
-
if config_metadata is not None
|
408 |
-
else 0,
|
409 |
-
)
|
410 |
-
col_mapping[text_col] = "source"
|
411 |
-
col_mapping[target_col] = "target"
|
412 |
-
|
413 |
-
elif selected_task == "summarization":
|
414 |
-
with col1:
|
415 |
-
st.markdown("`text` column")
|
416 |
-
st.text("")
|
417 |
-
st.text("")
|
418 |
-
st.text("")
|
419 |
-
st.text("")
|
420 |
-
st.markdown("`target` column")
|
421 |
-
with col2:
|
422 |
-
text_col = st.selectbox(
|
423 |
-
"This column should contain the text to be summarized",
|
424 |
-
col_names,
|
425 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "text"))
|
426 |
-
if config_metadata is not None
|
427 |
-
else 0,
|
428 |
-
)
|
429 |
-
target_col = st.selectbox(
|
430 |
-
"This column should contain the target summary",
|
431 |
-
col_names,
|
432 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
433 |
-
if config_metadata is not None
|
434 |
-
else 0,
|
435 |
-
)
|
436 |
-
col_mapping[text_col] = "text"
|
437 |
-
col_mapping[target_col] = "target"
|
438 |
-
|
439 |
-
elif selected_task == "extractive_question_answering":
|
440 |
-
if config_metadata is not None:
|
441 |
-
col_mapping = config_metadata["col_mapping"]
|
442 |
-
# Hub YAML parser converts periods to hyphens, so we remap them here
|
443 |
-
col_mapping = format_col_mapping(col_mapping)
|
444 |
-
with col1:
|
445 |
-
st.markdown("`context` column")
|
446 |
-
st.text("")
|
447 |
-
st.text("")
|
448 |
-
st.text("")
|
449 |
-
st.text("")
|
450 |
-
st.markdown("`question` column")
|
451 |
-
st.text("")
|
452 |
-
st.text("")
|
453 |
-
st.text("")
|
454 |
-
st.text("")
|
455 |
-
st.markdown("`answers.text` column")
|
456 |
-
st.text("")
|
457 |
-
st.text("")
|
458 |
-
st.text("")
|
459 |
-
st.text("")
|
460 |
-
st.markdown("`answers.answer_start` column")
|
461 |
-
with col2:
|
462 |
-
context_col = st.selectbox(
|
463 |
-
"This column should contain the question's context",
|
464 |
-
col_names,
|
465 |
-
index=col_names.index(get_key(col_mapping, "context")) if config_metadata is not None else 0,
|
466 |
-
)
|
467 |
-
question_col = st.selectbox(
|
468 |
-
"This column should contain the question to be answered, given the context",
|
469 |
-
col_names,
|
470 |
-
index=col_names.index(get_key(col_mapping, "question")) if config_metadata is not None else 0,
|
471 |
-
)
|
472 |
-
answers_text_col = st.selectbox(
|
473 |
-
"This column should contain example answers to the question, extracted from the context",
|
474 |
-
col_names,
|
475 |
-
index=col_names.index(get_key(col_mapping, "answers.text")) if config_metadata is not None else 0,
|
476 |
-
)
|
477 |
-
answers_start_col = st.selectbox(
|
478 |
-
"This column should contain the indices in the context of the first character of each `answers.text`",
|
479 |
-
col_names,
|
480 |
-
index=col_names.index(get_key(col_mapping, "answers.answer_start"))
|
481 |
-
if config_metadata is not None
|
482 |
-
else 0,
|
483 |
-
)
|
484 |
-
col_mapping[context_col] = "context"
|
485 |
-
col_mapping[question_col] = "question"
|
486 |
-
col_mapping[answers_text_col] = "answers.text"
|
487 |
-
col_mapping[answers_start_col] = "answers.answer_start"
|
488 |
-
elif selected_task in ["image_binary_classification", "image_multi_class_classification"]:
|
489 |
-
with col1:
|
490 |
-
st.markdown("`image` column")
|
491 |
-
st.text("")
|
492 |
-
st.text("")
|
493 |
-
st.text("")
|
494 |
-
st.text("")
|
495 |
-
st.markdown("`target` column")
|
496 |
-
with col2:
|
497 |
-
image_col = st.selectbox(
|
498 |
-
"This column should contain the images to be classified",
|
499 |
-
col_names,
|
500 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "image"))
|
501 |
-
if config_metadata is not None
|
502 |
-
else 0,
|
503 |
-
)
|
504 |
-
target_col = st.selectbox(
|
505 |
-
"This column should contain the labels associated with the images",
|
506 |
-
col_names,
|
507 |
-
index=col_names.index(get_key(config_metadata["col_mapping"], "target"))
|
508 |
-
if config_metadata is not None
|
509 |
-
else 0,
|
510 |
-
)
|
511 |
-
col_mapping[image_col] = "image"
|
512 |
-
col_mapping[target_col] = "target"
|
513 |
-
|
514 |
-
# Select metrics
|
515 |
-
st.markdown("**Select metrics**")
|
516 |
-
st.markdown("The following metrics will be computed")
|
517 |
-
html_string = " ".join(
|
518 |
-
[
|
519 |
-
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
|
520 |
-
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
|
521 |
-
+ 'padding-left:5px;color:white">'
|
522 |
-
+ metric
|
523 |
-
+ "</div></div>"
|
524 |
-
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
|
525 |
-
]
|
526 |
-
)
|
527 |
-
st.markdown(html_string, unsafe_allow_html=True)
|
528 |
-
selected_metrics = st.multiselect(
|
529 |
-
"(Optional) Select additional metrics",
|
530 |
-
sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
|
531 |
-
help="""User-selected metrics will be computed with their default arguments. \
|
532 |
-
For example, `f1` will report results for binary labels. \
|
533 |
-
Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
|
534 |
-
)
|
535 |
-
|
536 |
-
with st.form(key="form"):
|
537 |
-
compatible_models = get_compatible_models(selected_task, [selected_dataset])
|
538 |
-
selected_models = st.multiselect(
|
539 |
-
"Select the models you wish to evaluate",
|
540 |
-
compatible_models,
|
541 |
-
help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
|
542 |
-
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
543 |
-
)
|
544 |
-
print("INFO -- Selected models before filter:", selected_models)
|
545 |
-
|
546 |
-
hf_username = st.text_input("Enter your 🤗 Hub username to be notified when the evaluation is finished")
|
547 |
-
|
548 |
-
submit_button = st.form_submit_button("Evaluate models 🚀")
|
549 |
-
|
550 |
-
if submit_button:
|
551 |
-
if len(hf_username) == 0:
|
552 |
-
st.warning("No 🤗 Hub username provided! Please enter your username and try again.")
|
553 |
-
elif len(selected_models) == 0:
|
554 |
-
st.warning("⚠️ No models were selected for evaluation! Please select at least one model and try again.")
|
555 |
-
elif len(selected_models) > 10:
|
556 |
-
st.warning("Only 10 models can be evaluated at once. Please select fewer models and try again.")
|
557 |
-
else:
|
558 |
-
# Filter out previously evaluated models
|
559 |
-
selected_models = filter_evaluated_models(
|
560 |
-
selected_models,
|
561 |
-
selected_task,
|
562 |
-
selected_dataset,
|
563 |
-
selected_config,
|
564 |
-
selected_split,
|
565 |
-
selected_metrics,
|
566 |
-
)
|
567 |
-
print("INFO -- Selected models after filter:", selected_models)
|
568 |
-
if len(selected_models) > 0:
|
569 |
-
project_payload = {
|
570 |
-
"username": AUTOTRAIN_USERNAME,
|
571 |
-
"proj_name": create_autotrain_project_name(selected_dataset, selected_config),
|
572 |
-
"task": TASK_TO_ID[selected_task],
|
573 |
-
"config": {
|
574 |
-
"language": AUTOTRAIN_TASK_TO_LANG[selected_task]
|
575 |
-
if selected_task in AUTOTRAIN_TASK_TO_LANG
|
576 |
-
else "en",
|
577 |
-
"max_models": 5,
|
578 |
-
"instance": {
|
579 |
-
"provider": "sagemaker" if selected_task in AUTOTRAIN_MACHINE.keys() else "ovh",
|
580 |
-
"instance_type": AUTOTRAIN_MACHINE[selected_task]
|
581 |
-
if selected_task in AUTOTRAIN_MACHINE.keys()
|
582 |
-
else "p3",
|
583 |
-
"max_runtime_seconds": 172800,
|
584 |
-
"num_instances": 1,
|
585 |
-
"disk_size_gb": 200,
|
586 |
-
},
|
587 |
-
"evaluation": {
|
588 |
-
"metrics": selected_metrics,
|
589 |
-
"models": selected_models,
|
590 |
-
"hf_username": hf_username,
|
591 |
-
},
|
592 |
-
},
|
593 |
-
}
|
594 |
-
print(f"INFO -- Payload: {project_payload}")
|
595 |
-
project_json_resp = http_post(
|
596 |
-
path="/projects/create",
|
597 |
-
payload=project_payload,
|
598 |
-
token=HF_TOKEN,
|
599 |
-
domain=AUTOTRAIN_BACKEND_API,
|
600 |
-
).json()
|
601 |
-
print(f"INFO -- Project creation response: {project_json_resp}")
|
602 |
-
|
603 |
-
if project_json_resp["created"]:
|
604 |
-
data_payload = {
|
605 |
-
"split": 4, # use "auto" split choice in AutoTrain
|
606 |
-
"col_mapping": col_mapping,
|
607 |
-
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
608 |
-
"dataset_id": selected_dataset,
|
609 |
-
"dataset_config": selected_config,
|
610 |
-
"dataset_split": selected_split,
|
611 |
-
}
|
612 |
-
data_json_resp = http_post(
|
613 |
-
path=f"/projects/{project_json_resp['id']}/data/dataset",
|
614 |
-
payload=data_payload,
|
615 |
-
token=HF_TOKEN,
|
616 |
-
domain=AUTOTRAIN_BACKEND_API,
|
617 |
-
).json()
|
618 |
-
print(f"INFO -- Dataset creation response: {data_json_resp}")
|
619 |
-
if data_json_resp["download_status"] == 1:
|
620 |
-
train_json_resp = http_post(
|
621 |
-
path=f"/projects/{project_json_resp['id']}/data/start_processing",
|
622 |
-
token=HF_TOKEN,
|
623 |
-
domain=AUTOTRAIN_BACKEND_API,
|
624 |
-
).json()
|
625 |
-
# For local development we process and approve projects on-the-fly
|
626 |
-
if "localhost" in AUTOTRAIN_BACKEND_API:
|
627 |
-
with st.spinner("⏳ Waiting for data processing to complete ..."):
|
628 |
-
is_data_processing_success = False
|
629 |
-
while is_data_processing_success is not True:
|
630 |
-
project_status = http_get(
|
631 |
-
path=f"/projects/{project_json_resp['id']}",
|
632 |
-
token=HF_TOKEN,
|
633 |
-
domain=AUTOTRAIN_BACKEND_API,
|
634 |
-
).json()
|
635 |
-
if project_status["status"] == 3:
|
636 |
-
is_data_processing_success = True
|
637 |
-
time.sleep(10)
|
638 |
-
|
639 |
-
# Approve training job
|
640 |
-
train_job_resp = http_post(
|
641 |
-
path=f"/projects/{project_json_resp['id']}/start_training",
|
642 |
-
token=HF_TOKEN,
|
643 |
-
domain=AUTOTRAIN_BACKEND_API,
|
644 |
-
).json()
|
645 |
-
st.success("✅ Data processing and project approval complete - go forth and evaluate!")
|
646 |
-
else:
|
647 |
-
# Prod/staging submissions are evaluated in a cron job via run_evaluation_jobs.py
|
648 |
-
print(f"INFO -- AutoTrain job response: {train_json_resp}")
|
649 |
-
if train_json_resp["success"]:
|
650 |
-
train_eval_index = {
|
651 |
-
"train-eval-index": [
|
652 |
-
{
|
653 |
-
"config": selected_config,
|
654 |
-
"task": AUTOTRAIN_TASK_TO_HUB_TASK[selected_task],
|
655 |
-
"task_id": selected_task,
|
656 |
-
"splits": {"eval_split": selected_split},
|
657 |
-
"col_mapping": col_mapping,
|
658 |
-
}
|
659 |
-
]
|
660 |
-
}
|
661 |
-
selected_metadata = yaml.dump(train_eval_index, sort_keys=False)
|
662 |
-
dataset_card_url = get_dataset_card_url(selected_dataset)
|
663 |
-
st.success("✅ Successfully submitted evaluation job!")
|
664 |
-
st.markdown(
|
665 |
-
f"""
|
666 |
-
Evaluation can take up to 1 hour to complete, so grab a ☕️ or 🍵 while you wait:
|
667 |
-
|
668 |
-
* 🔔 A [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) with the evaluation results will be opened for each model you selected. Check your email for notifications.
|
669 |
-
* 📊 Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) to view the results from your submission once the Hub pull request is merged.
|
670 |
-
* 🥱 Tired of configuring evaluations? Add the following metadata to the [dataset card]({dataset_card_url}) to enable 1-click evaluations:
|
671 |
-
""" # noqa
|
672 |
-
)
|
673 |
-
st.markdown(
|
674 |
-
f"""
|
675 |
-
```yaml
|
676 |
-
{selected_metadata}
|
677 |
-
"""
|
678 |
-
)
|
679 |
-
print("INFO -- Pushing evaluation job logs to the Hub")
|
680 |
-
evaluation_log = {}
|
681 |
-
evaluation_log["project_id"] = project_json_resp["id"]
|
682 |
-
evaluation_log["autotrain_env"] = (
|
683 |
-
"staging" if "staging" in AUTOTRAIN_BACKEND_API else "prod"
|
684 |
-
)
|
685 |
-
evaluation_log["payload"] = project_payload
|
686 |
-
evaluation_log["project_creation_response"] = project_json_resp
|
687 |
-
evaluation_log["dataset_creation_response"] = data_json_resp
|
688 |
-
evaluation_log["autotrain_job_response"] = train_json_resp
|
689 |
-
commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
|
690 |
-
else:
|
691 |
-
st.error("🙈 Oh no, there was an error submitting your evaluation job!")
|
692 |
-
else:
|
693 |
-
st.warning("⚠️ No models left to evaluate! Please select other models and try again.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|