lewtun HF staff commited on
Commit
7b53738
Β·
unverified Β·
2 Parent(s): ecefcd1 dd366f1

Merge pull request #20 from huggingface/add-qa-linking

Browse files
Files changed (4) hide show
  1. README.md +2 -2
  2. app.py +3 -3
  3. evaluation.py +1 -1
  4. utils.py +27 -13
README.md CHANGED
@@ -23,5 +23,5 @@ The table below shows which tasks are currently supported for evaluation in the
23
  | `multi_label_classification` | ❌ | |
24
  | `entity_extraction` | βœ… | [`eval-staging-838`](https://huggingface.co/datasets/autoevaluate/eval-staging-838) |
25
  | `extractive_question_answering` | βœ… | |
26
- | `translation` | ❌ | |
27
- | `summarization` | ❌ | |
 
23
  | `multi_label_classification` | ❌ | |
24
  | `entity_extraction` | βœ… | [`eval-staging-838`](https://huggingface.co/datasets/autoevaluate/eval-staging-838) |
25
  | `extractive_question_answering` | βœ… | |
26
+ | `translation` | βœ… | |
27
+ | `summarization` | βœ… | |
app.py CHANGED
@@ -67,6 +67,7 @@ def get_supported_metrics():
67
  # in the same environment. Refactor to avoid needing to actually load
68
  # the metric.
69
  try:
 
70
  metric_func = load(metric)
71
  except Exception as e:
72
  print(e)
@@ -103,7 +104,7 @@ st.markdown(
103
  Welcome to Hugging Face's automatic model evaluator! This application allows
104
  you to evaluate πŸ€— Transformers
105
  [models](https://huggingface.co/models?library=transformers&sort=downloads)
106
- across a wide variety of datasets on the Hub -- all for free! Please select
107
  the dataset and configuration below. The results of your evaluation will be
108
  displayed on the [public
109
  leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
@@ -345,8 +346,7 @@ with st.expander("Advanced configuration"):
345
  )
346
 
347
  with st.form(key="form"):
348
-
349
- compatible_models = get_compatible_models(selected_task, selected_dataset)
350
  selected_models = st.multiselect(
351
  "Select the models you wish to evaluate",
352
  compatible_models,
 
67
  # in the same environment. Refactor to avoid needing to actually load
68
  # the metric.
69
  try:
70
+ print(f"INFO -- Attempting to load metric: {metric}")
71
  metric_func = load(metric)
72
  except Exception as e:
73
  print(e)
 
104
  Welcome to Hugging Face's automatic model evaluator! This application allows
105
  you to evaluate πŸ€— Transformers
106
  [models](https://huggingface.co/models?library=transformers&sort=downloads)
107
+ across a wide variety of datasets on the Hub. Please select
108
  the dataset and configuration below. The results of your evaluation will be
109
  displayed on the [public
110
  leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
 
346
  )
347
 
348
  with st.form(key="form"):
349
+ compatible_models = get_compatible_models(selected_task, [selected_dataset])
 
350
  selected_models = st.multiselect(
351
  "Select the models you wish to evaluate",
352
  compatible_models,
evaluation.py CHANGED
@@ -43,7 +43,7 @@ def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_
43
  )
44
  candidate_id = hash(evaluation_info)
45
  if candidate_id in evaluation_ids:
46
- st.info(f"Model {model} has already been evaluated on this configuration. Skipping evaluation...")
47
  models.pop(idx)
48
 
49
  return models
 
43
  )
44
  candidate_id = hash(evaluation_info)
45
  if candidate_id in evaluation_ids:
46
+ st.info(f"Model `{model}` has already been evaluated on this configuration. Skipping evaluation...")
47
  models.pop(idx)
48
 
49
  return models
utils.py CHANGED
@@ -1,4 +1,4 @@
1
- from typing import Dict, Union
2
 
3
  import jsonlines
4
  import requests
@@ -19,9 +19,6 @@ HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items(
19
  LOGS_REPO = "evaluation-job-logs"
20
 
21
 
22
- api = HfApi()
23
-
24
-
25
  def get_auth_headers(token: str, prefix: str = "autonlp"):
26
  return {"Authorization": f"{prefix} {token}"}
27
 
@@ -65,15 +62,32 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
65
  return None
66
 
67
 
68
- def get_compatible_models(task, dataset_name):
69
- # TODO: relax filter on PyTorch models once supported in AutoTrain
70
- filt = ModelFilter(
71
- task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
72
- trained_dataset=dataset_name,
73
- library=["transformers", "pytorch"],
74
- )
75
- compatible_models = api.list_models(filter=filt)
76
- return sorted([model.modelId for model in compatible_models])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
 
79
  def get_key(col_mapping, val):
 
1
+ from typing import Dict, List, Union
2
 
3
  import jsonlines
4
  import requests
 
19
  LOGS_REPO = "evaluation-job-logs"
20
 
21
 
 
 
 
22
  def get_auth_headers(token: str, prefix: str = "autonlp"):
23
  return {"Authorization": f"{prefix} {token}"}
24
 
 
62
  return None
63
 
64
 
65
+ def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]:
66
+ """
67
+ Returns all model IDs that are compatible with the given task and dataset names.
68
+
69
+ Args:
70
+ task (`str`): The task to search for.
71
+ dataset_names (`List[str]`): A list of dataset names to search for.
72
+
73
+ Returns:
74
+ A list of model IDs, sorted alphabetically.
75
+ """
76
+ compatible_models = []
77
+ # Include models trained on SQuAD datasets, since these can be evaluated on
78
+ # other SQuAD-like datasets
79
+ if task == "extractive_question_answering":
80
+ dataset_ids.extend(["squad", "squad_v2"])
81
+
82
+ # TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain
83
+ for dataset_id in dataset_ids:
84
+ model_filter = ModelFilter(
85
+ task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
86
+ trained_dataset=dataset_id,
87
+ library=["transformers", "pytorch"],
88
+ )
89
+ compatible_models.extend(HfApi().list_models(filter=model_filter))
90
+ return set(sorted([model.modelId for model in compatible_models]))
91
 
92
 
93
  def get_key(col_mapping, val):