File size: 16,791 Bytes
b6ac700 1e744c4 50167d4 1e744c4 7f18dc4 1e744c4 b6ac700 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 8077be2 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 85d6c89 1e744c4 e8762f9 40311b7 e8762f9 40311b7 e8762f9 8e80889 d0c7a01 85d6c89 4e2f72e 90c1d05 4e2f72e d0c7a01 85d6c89 d0c7a01 85d6c89 d0c7a01 85d6c89 b01e56c 61d82fd f96cbbf 61d82fd 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 b6ac700 1e744c4 ec7cc5c b6ac700 1e744c4 ec7cc5c 1e744c4 a1da02d 1e744c4 ec7cc5c db65615 ec7cc5c db65615 d0c7a01 85d6c89 b6ac700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
{
"models": {
"whisper": [
// Configuration for the built-in models. You can remove any of these
// if you don't want to use the default models.
{
"name": "tiny",
"url": "tiny"
},
{
"name": "base",
"url": "base"
},
{
"name": "small",
"url": "small"
},
{
"name": "medium",
"url": "medium"
},
{
"name": "large",
"url": "large"
},
{
"name": "large-v1",
"url": "large-v1"
},
{
"name": "large-v2",
"url": "large-v2"
},
{
"name": "large-v3",
"url": "large-v3"
},
{
"name": "large-v3-turbo",
"url": "large-v3-turbo"
}
// Uncomment to add custom Japanese models
//{
// "name": "whisper-large-v2-mix-jp",
// "url": "vumichien/whisper-large-v2-mix-jp",
// // The type of the model. Can be "huggingface" or "whisper" - "whisper" is the default.
// // HuggingFace models are loaded using the HuggingFace transformers library and then converted to Whisper models.
// "type": "huggingface",
//},
//{
// "name": "local-model",
// "url": "path/to/local/model",
//},
//{
// "name": "remote-model",
// "url": "https://example.com/path/to/model",
//}
],
"m2m100": [
{
"name": "m2m100_1.2B-ct2fast/michaelfeil",
"url": "michaelfeil/ct2fast-m2m100_1.2B",
"type": "huggingface",
"tokenizer_url": "facebook/m2m100_1.2B"
},
{
"name": "m2m100_1.2B/facebook",
"url": "facebook/m2m100_1.2B",
"type": "huggingface"
},
{
"name": "m2m100_418M-ct2fast/michaelfeil",
"url": "michaelfeil/ct2fast-m2m100_418M",
"type": "huggingface",
"tokenizer_url": "facebook/m2m100_418M"
},
{
"name": "m2m100_418M/facebook",
"url": "facebook/m2m100_418M",
"type": "huggingface"
},
{
"name": "m2m100-12B-last-ckpt/facebook",
"url": "facebook/m2m100-12B-last-ckpt",
"type": "huggingface"
},
{
"name": "m2m100-12B-ct2fast/michaelfeil",
"url": "michaelfeil/ct2fast-m2m100-12B-last-ckpt",
"type": "huggingface",
"tokenizer_url": "facebook/m2m100-12B-last-ckpt"
}
],
"nllb": [
{
"name": "nllb-200-distilled-1.3B-ct2:int8/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-1.3B-ct2-int8",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-1.3B"
},
{
"name": "nllb-200-distilled-1.3B-ct2fast:int8_float16/michaelfeil",
"url": "michaelfeil/ct2fast-nllb-200-distilled-1.3B",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-1.3B"
},
{
"name": "nllb-200-distilled-1.3B-ct2:float16/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-1.3B-ct2-float16",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-1.3B"
},
{
"name": "nllb-200-distilled-1.3B-ct2/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-1.3B-ct2",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-1.3B"
},
{
"name": "nllb-200-1.3B-ct2:int8/JustFrederik",
"url": "JustFrederik/nllb-200-1.3B-ct2-int8",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-1.3B"
},
{
"name": "nllb-200-1.3B-ct2:float16/JustFrederik",
"url": "JustFrederik/nllb-200-1.3B-ct2-float16",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-1.3B"
},
{
"name": "nllb-200-1.3B-ct2/JustFrederik",
"url": "JustFrederik/nllb-200-1.3B-ct2",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-1.3B"
},
{
"name": "nllb-200-distilled-1.3B/facebook",
"url": "facebook/nllb-200-distilled-1.3B",
"type": "huggingface"
},
{
"name": "nllb-200-1.3B/facebook",
"url": "facebook/nllb-200-1.3B",
"type": "huggingface"
},
{
"name": "nllb-200-3.3B-ct2fast:int8_float16/michaelfeil",
"url": "michaelfeil/ct2fast-nllb-200-3.3B",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-3.3B"
},
{
"name": "nllb-200-3.3B-ct2:float16/JustFrederik",
"url": "JustFrederik/nllb-200-3.3B-ct2-float16",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-3.3B"
},
{
"name": "nllb-200-3.3B/facebook",
"url": "facebook/nllb-200-3.3B",
"type": "huggingface"
},
{
"name": "nllb-200-distilled-600M/facebook",
"url": "facebook/nllb-200-distilled-600M",
"type": "huggingface"
},
{
"name": "nllb-200-distilled-600M-ct2:int8/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-600M-ct2-int8",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-600M"
},
{
"name": "nllb-200-distilled-600M-ct2:float16/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-600M-ct2-float16",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-600M"
},
{
"name": "nllb-200-distilled-600M-ct2/JustFrederik",
"url": "JustFrederik/nllb-200-distilled-600M-ct2",
"type": "huggingface",
"tokenizer_url": "facebook/nllb-200-distilled-600M"
}
],
"mt5": [
{
"name": "mt5-zh-ja-en-trimmed/K024",
"url": "K024/mt5-zh-ja-en-trimmed",
"type": "huggingface"
},
{
"name": "mt5-zh-ja-en-trimmed-fine-tuned-v1/engmatic-earth",
"url": "engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1",
"type": "huggingface"
}
],
"ALMA": [
{
"name": "ALMA-7B-GPTQ/TheBloke",
"url": "TheBloke/ALMA-7B-GPTQ",
"type": "huggingface"
},
{
"name": "ALMA-13B-GPTQ/TheBloke",
"url": "TheBloke/ALMA-13B-GPTQ",
"type": "huggingface"
},
{
"name": "ALMA-7B-GGUF-Q4_K_M/TheBloke",
"url": "TheBloke/ALMA-7B-GGUF",
"type": "huggingface",
"model_file": "alma-7b.Q4_K_M.gguf",
"tokenizer_url": "haoranxu/ALMA-7B"
},
{
"name": "ALMA-13B-GGUF-Q4_K_M/TheBloke",
"url": "TheBloke/ALMA-13B-GGUF",
"type": "huggingface",
"model_file": "alma-13b.Q4_K_M.gguf",
"tokenizer_url": "haoranxu/ALMA-13B"
},
{
"name": "ALMA-7B-ct2:int8_float16/avan",
"url": "avans06/ALMA-7B-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "haoranxu/ALMA-7B"
},
{
"name": "ALMA-13B-ct2:int8_float16/avan",
"url": "avans06/ALMA-13B-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "haoranxu/ALMA-13B"
},
{
"name": "ALMA-7B/haoranxu",
"url": "haoranxu/ALMA-7B",
"type": "huggingface"
},
{
"name": "ALMA-13B/haoranxu",
"url": "haoranxu/ALMA-13B",
"type": "huggingface"
}
],
"madlad400": [
{
"name": "madlad400-3b-mt-ct2-int8_float16/SoybeanMilk",
"url": "SoybeanMilk/madlad400-3b-mt-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "jbochi/madlad400-3b-mt"
},
{
"name": "madlad400-7b-mt-bt-ct2-int8_float16/avan",
"url": "avans06/madlad400-7b-mt-bt-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "jbochi/madlad400-7b-mt-bt"
},
{
"name": "madlad400-10b-mt-ct2-int8_float16/SoybeanMilk",
"url": "SoybeanMilk/madlad400-10b-mt-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "jbochi/madlad400-10b-mt"
},
{
"name": "madlad400-3b-mt/jbochi",
"url": "jbochi/madlad400-3b-mt",
"type": "huggingface"
},
{
"name": "madlad400-7b-mt-bt/jbochi",
"url": "jbochi/madlad400-7b-mt-bt",
"type": "huggingface"
},
{
"name": "madlad400-10b-mt/jbochi",
"url": "jbochi/madlad400-10b-mt",
"type": "huggingface"
}
],
"seamless": [
//{
// "name": "hf-seamless-m4t-medium/facebook",
// "url": "facebook/hf-seamless-m4t-medium",
// "type": "huggingface"
//},
//{
// "name": "seamless-m4t-large/facebook",
// "url": "facebook/seamless-m4t-large",
// "type": "huggingface"
//},
{
"name": "seamless-m4t-v2-large/facebook",
"url": "facebook/seamless-m4t-v2-large",
"type": "huggingface"
}
],
"Llama": [
{
"name": "Meta-Llama-3.1-8B-Instruct-ct2-int8_float16/avan",
"url": "avans06/Meta-Llama-3.1-8B-Instruct-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "avans06/Meta-Llama-3.1-8B-Instruct-ct2-int8_float16"
},
{
"name": "Meta-Llama-3-8B-Instruct-ct2-int8_float16/avan",
"url": "avans06/Meta-Llama-3-8B-Instruct-ct2-int8_float16",
"type": "huggingface",
"tokenizer_url": "avans06/Meta-Llama-3-8B-Instruct-ct2-int8_float16"
}
]
},
// Configuration options that will be used if they are not specified in the command line arguments.
// * WEBUI options *
// Maximum audio file length in seconds, or -1 for no limit. Ignored by CLI.
"input_audio_max_duration": 1800,
// True to share the app on HuggingFace.
"share": false,
// The host or IP to bind to. If None, bind to localhost.
"server_name": null,
// The port to bind to.
"server_port": 7860,
// The number of workers to use for the web server. Use -1 to disable queueing.
"queue_concurrency_count": 1,
// Whether or not to automatically delete all uploaded files, to save disk space
"delete_uploaded_files": true,
// * General options *
// The default implementation to use for Whisper. Can be "whisper" or "faster-whisper".
// Note that you must either install the requirements for faster-whisper (requirements-fasterWhisper.txt)
// or whisper (requirements.txt)
"whisper_implementation": "faster-whisper",
// The default model name.
"default_model_name": "large-v2",
// The default VAD.
"default_vad": "silero-vad",
// A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.
"vad_parallel_devices": "",
// The number of CPU cores to use for VAD pre-processing.
"vad_cpu_cores": 1,
// The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.
"vad_process_timeout": 1800,
// True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.
"auto_parallel": false,
// Directory to save the outputs (CLI will use the current directory if not specified)
"output_dir": null,
// The path to save model files; uses ~/.cache/whisper by default
"model_dir": null,
// Device to use for PyTorch inference, or Null to use the default device
"device": null,
// Whether to print out the progress and debug messages
"verbose": true,
// Whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')
"task": "transcribe",
// Language spoken in the audio, specify None to perform language detection
"language": null,
// The window size (in seconds) to merge voice segments
"vad_merge_window": 5,
// The maximum size (in seconds) of a voice segment
"vad_max_merge_size": 90,
// The padding (in seconds) to add to each voice segment
"vad_padding": 1,
// Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)
"vad_initial_prompt_mode": "prepend_first_segment",
// The window size of the prompt to pass to Whisper
"vad_prompt_window": 3,
// Temperature to use for sampling
"temperature": 0,
// Number of candidates when sampling with non-zero temperature
"best_of": 5,
// Number of beams in beam search, only applicable when temperature is zero
"beam_size": 5,
// Optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search
"patience": 1,
// Optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default
"length_penalty": null,
// Comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations
"suppress_tokens": "-1",
// Optional text to provide as a prompt for the first window
"initial_prompt": null,
// If True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop
"condition_on_previous_text": true,
// Whether to perform inference in fp16; True by default
"fp16": true,
// The compute type used by faster-whisper. Can be "int8". "int16" or "float16".
"compute_type": "auto",
// Temperature to increase when falling back when the decoding fails to meet either of the thresholds below
"temperature_increment_on_fallback": 0.2,
// If the gzip compression ratio is higher than this value, treat the decoding as failed
"compression_ratio_threshold": 2.4,
// If the average log probability is lower than this value, treat the decoding as failed
"logprob_threshold": -1.0,
// If the probability of the <no-speech> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence
"no_speech_threshold": 0.6,
// [faster-whisper] The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.
"repetition_penalty": 1.0,
// [faster-whisper] The model ensures that a sequence of words of no_repeat_ngram_size isn’t repeated in the output sequence. If specified, it must be a positive integer greater than 1.
"no_repeat_ngram_size": 0,
// (experimental) extract word-level timestamps and refine the results based on them
"word_timestamps": true,
// if word_timestamps is True, merge these punctuation symbols with the next word
"prepend_punctuations": "\"\'“¿([{-",
// if word_timestamps is True, merge these punctuation symbols with the previous word
"append_punctuations": "\"\'.。,,!!??::”)]}、",
// (requires --word_timestamps True) underline each word as it is spoken in srt and vtt
"highlight_words": false,
// Diarization settings
"auth_token": null,
// Whether to perform speaker diarization
"diarization": false,
// The number of speakers to detect
"diarization_speakers": 2,
// The minimum number of speakers to detect
"diarization_min_speakers": 1,
// The maximum number of speakers to detect
"diarization_max_speakers": 8,
// The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.
"diarization_process_timeout": 60,
// Whisper Segments Filter
"whisper_segments_filter": false,
"whisper_segments_filters": [
"avg_logprob < -0.9",
"(durationLen < 1.5 || segment_last), textLen > 5, avg_logprob < -0.4, no_speech_prob > 0.5",
"(durationLen < 1.5 || segment_last), textLen > 5, avg_logprob < -0.4, no_speech_prob > 0.07, compression_ratio < 0.9",
"(durationLen < 1.5 || segment_last), compression_ratio < 0.9, no_speech_prob > 0.1"
],
// Translation - The maximum batch size.
"translation_batch_size": 2,
// Translation - Prevent repetitions of ngrams with this size (set 0 to disable).
"translation_no_repeat_ngram_size": 4,
// Translation - Beam size (1 for greedy search).
"translation_num_beams": 3,
// Translation - Torch Dtype float16, Load the float32 translation model with float16 when the system supports GPU (reducing VRAM usage, not applicable to quantized models, such as Ctranslate2, GPTQ, GGUF).
"translation_torch_dtype_float16": true,
// Translation - Using Bitsandbytes, Load the float32 translation model into mixed-8bit or 4bit precision quantized model(not applicable to quantized models, such as Ctranslate2, GPTQ, GGUF).
"translation_using_bitsandbytes": null
} |