avans06's picture
Merge branch 'main' of https://huggingface.co/spaces/aadnk/whisper-webui
6fc9a01
raw
history blame
7.39 kB
from enum import Enum
import urllib
import os
from typing import List
from urllib.parse import urlparse
import json5
import torch
from tqdm import tqdm
class ModelConfig:
def __init__(self, name: str, url: str, path: str = None, type: str = "whisper"):
"""
Initialize a model configuration.
name: Name of the model
url: URL to download the model from
path: Path to the model file. If not set, the model will be downloaded from the URL.
type: Type of model. Can be whisper or huggingface.
"""
self.name = name
self.url = url
self.path = path
self.type = type
VAD_INITIAL_PROMPT_MODE_VALUES=["prepend_all_segments", "prepend_first_segment", "json_prompt_mode"]
class VadInitialPromptMode(Enum):
PREPEND_ALL_SEGMENTS = 1
PREPREND_FIRST_SEGMENT = 2
JSON_PROMPT_MODE = 3
@staticmethod
def from_string(s: str):
normalized = s.lower() if s is not None else None
if normalized == "prepend_all_segments":
return VadInitialPromptMode.PREPEND_ALL_SEGMENTS
elif normalized == "prepend_first_segment":
return VadInitialPromptMode.PREPREND_FIRST_SEGMENT
elif normalized == "json_prompt_mode":
return VadInitialPromptMode.JSON_PROMPT_MODE
elif normalized is not None and normalized != "":
raise ValueError(f"Invalid value for VadInitialPromptMode: {s}")
else:
return None
class ApplicationConfig:
def __init__(self, models: List[ModelConfig] = [], nllb_models: List[ModelConfig] = [], input_audio_max_duration: int = 600,
share: bool = False, server_name: str = None, server_port: int = 7860,
queue_concurrency_count: int = 1, delete_uploaded_files: bool = True,
whisper_implementation: str = "whisper",
default_model_name: str = "medium", default_nllb_model_name: str = "distilled-600M", default_vad: str = "silero-vad",
vad_parallel_devices: str = "", vad_cpu_cores: int = 1, vad_process_timeout: int = 1800,
auto_parallel: bool = False, output_dir: str = None,
model_dir: str = None, device: str = None,
verbose: bool = True, task: str = "transcribe", language: str = None,
vad_initial_prompt_mode: str = "prepend_first_segment ",
vad_merge_window: float = 5, vad_max_merge_size: float = 30,
vad_padding: float = 1, vad_prompt_window: float = 3,
temperature: float = 0, best_of: int = 5, beam_size: int = 5,
patience: float = None, length_penalty: float = None,
suppress_tokens: str = "-1", initial_prompt: str = None,
condition_on_previous_text: bool = True, fp16: bool = True,
compute_type: str = "float16",
temperature_increment_on_fallback: float = 0.2, compression_ratio_threshold: float = 2.4,
logprob_threshold: float = -1.0, no_speech_threshold: float = 0.6,
# Word timestamp settings
word_timestamps: bool = False, prepend_punctuations: str = "\"\'“¿([{-",
append_punctuations: str = "\"\'.。,,!!??::”)]}、",
highlight_words: bool = False,
# Diarization
auth_token: str = None, diarization: bool = False, diarization_speakers: int = 2,
diarization_min_speakers: int = 1, diarization_max_speakers: int = 5,
diarization_process_timeout: int = 60):
self.models = models
self.nllb_models = nllb_models
# WebUI settings
self.input_audio_max_duration = input_audio_max_duration
self.share = share
self.server_name = server_name
self.server_port = server_port
self.queue_concurrency_count = queue_concurrency_count
self.delete_uploaded_files = delete_uploaded_files
self.whisper_implementation = whisper_implementation
self.default_model_name = default_model_name
self.default_nllb_model_name = default_nllb_model_name
self.default_vad = default_vad
self.vad_parallel_devices = vad_parallel_devices
self.vad_cpu_cores = vad_cpu_cores
self.vad_process_timeout = vad_process_timeout
self.auto_parallel = auto_parallel
self.output_dir = output_dir
self.model_dir = model_dir
self.device = device
self.verbose = verbose
self.task = task
self.language = language
self.vad_initial_prompt_mode = vad_initial_prompt_mode
self.vad_merge_window = vad_merge_window
self.vad_max_merge_size = vad_max_merge_size
self.vad_padding = vad_padding
self.vad_prompt_window = vad_prompt_window
self.temperature = temperature
self.best_of = best_of
self.beam_size = beam_size
self.patience = patience
self.length_penalty = length_penalty
self.suppress_tokens = suppress_tokens
self.initial_prompt = initial_prompt
self.condition_on_previous_text = condition_on_previous_text
self.fp16 = fp16
self.compute_type = compute_type
self.temperature_increment_on_fallback = temperature_increment_on_fallback
self.compression_ratio_threshold = compression_ratio_threshold
self.logprob_threshold = logprob_threshold
self.no_speech_threshold = no_speech_threshold
# Word timestamp settings
self.word_timestamps = word_timestamps
self.prepend_punctuations = prepend_punctuations
self.append_punctuations = append_punctuations
self.highlight_words = highlight_words
# Diarization settings
self.auth_token = auth_token
self.diarization = diarization
self.diarization_speakers = diarization_speakers
self.diarization_min_speakers = diarization_min_speakers
self.diarization_max_speakers = diarization_max_speakers
self.diarization_process_timeout = diarization_process_timeout
def get_model_names(self):
return [ x.name for x in self.models ]
def get_nllb_model_names(self):
return [ x.name for x in self.nllb_models ]
def update(self, **new_values):
result = ApplicationConfig(**self.__dict__)
for key, value in new_values.items():
setattr(result, key, value)
return result
@staticmethod
def create_default(**kwargs):
app_config = ApplicationConfig.parse_file(os.environ.get("WHISPER_WEBUI_CONFIG", "config.json5"))
# Update with kwargs
if len(kwargs) > 0:
app_config = app_config.update(**kwargs)
return app_config
@staticmethod
def parse_file(config_path: str):
import json5
with open(config_path, "r", encoding="utf-8") as f:
# Load using json5
data = json5.load(f)
data_models = data.pop("models", [])
data_nllb_models = data.pop("nllb_models", [])
models = [ ModelConfig(**x) for x in data_models ]
nllb_models = [ ModelConfig(**x) for x in data_nllb_models ]
return ApplicationConfig(models, nllb_models, **data)