|
import multiprocessing |
|
from queue import Empty |
|
import threading |
|
import time |
|
from src.hooks.progressListener import ProgressListener |
|
from src.vad import AbstractTranscription, TranscriptionConfig, get_audio_duration |
|
|
|
from multiprocessing import Pool, Queue |
|
|
|
from typing import Any, Dict, List, Union |
|
import os |
|
|
|
from src.whisper.abstractWhisperContainer import AbstractWhisperCallback |
|
|
|
class _ProgressListenerToQueue(ProgressListener): |
|
def __init__(self, progress_queue: Queue): |
|
self.progress_queue = progress_queue |
|
self.progress_total = 0 |
|
self.prev_progress = 0 |
|
|
|
def on_progress(self, current: Union[int, float], total: Union[int, float], desc: str = None): |
|
delta = current - self.prev_progress |
|
self.prev_progress = current |
|
self.progress_total = total |
|
self.progress_queue.put(delta) |
|
|
|
def on_finished(self): |
|
if self.progress_total > self.prev_progress: |
|
delta = self.progress_total - self.prev_progress |
|
self.progress_queue.put(delta) |
|
self.prev_progress = self.progress_total |
|
|
|
class ParallelContext: |
|
def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None): |
|
self.num_processes = num_processes |
|
self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds |
|
self.lock = threading.Lock() |
|
|
|
self.ref_count = 0 |
|
self.pool = None |
|
self.cleanup_timer = None |
|
|
|
def get_pool(self): |
|
|
|
if (self.pool is None): |
|
context = multiprocessing.get_context('spawn') |
|
self.pool = context.Pool(self.num_processes) |
|
|
|
self.ref_count = self.ref_count + 1 |
|
|
|
if (self.auto_cleanup_timeout_seconds is not None): |
|
self._stop_auto_cleanup() |
|
|
|
return self.pool |
|
|
|
def return_pool(self, pool): |
|
if (self.pool == pool and self.ref_count > 0): |
|
self.ref_count = self.ref_count - 1 |
|
|
|
if (self.ref_count == 0): |
|
if (self.auto_cleanup_timeout_seconds is not None): |
|
self._start_auto_cleanup() |
|
|
|
def _start_auto_cleanup(self): |
|
if (self.cleanup_timer is not None): |
|
self.cleanup_timer.cancel() |
|
self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup) |
|
self.cleanup_timer.start() |
|
|
|
print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds") |
|
|
|
def _stop_auto_cleanup(self): |
|
if (self.cleanup_timer is not None): |
|
self.cleanup_timer.cancel() |
|
self.cleanup_timer = None |
|
|
|
print("Stopped auto cleanup of pool") |
|
|
|
def _execute_cleanup(self): |
|
print("Executing cleanup of pool") |
|
|
|
if (self.ref_count == 0): |
|
self.close() |
|
|
|
def close(self): |
|
self._stop_auto_cleanup() |
|
|
|
if (self.pool is not None): |
|
print("Closing pool of " + str(self.num_processes) + " processes") |
|
self.pool.close() |
|
self.pool.join() |
|
self.pool = None |
|
|
|
class ParallelTranscriptionConfig(TranscriptionConfig): |
|
def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None): |
|
super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index) |
|
self.device_id = device_id |
|
self.override_timestamps = override_timestamps |
|
|
|
class ParallelTranscription(AbstractTranscription): |
|
|
|
|
|
MIN_CPU_CHUNK_SIZE_SECONDS = 2 * 60 |
|
|
|
def __init__(self, sampling_rate: int = 16000): |
|
super().__init__(sampling_rate=sampling_rate) |
|
|
|
def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: AbstractWhisperCallback, config: TranscriptionConfig, |
|
cpu_device_count: int, gpu_devices: List[str], cpu_parallel_context: ParallelContext = None, gpu_parallel_context: ParallelContext = None, |
|
progress_listener: ProgressListener = None): |
|
total_duration = get_audio_duration(audio) |
|
|
|
|
|
if (cpu_device_count > 1 and not transcription.is_transcribe_timestamps_fast()): |
|
merged = self._get_merged_timestamps_parallel(transcription, audio, config, total_duration, cpu_device_count, cpu_parallel_context) |
|
else: |
|
timestamp_segments = transcription.get_transcribe_timestamps(audio, config, 0, total_duration) |
|
merged = transcription.get_merged_timestamps(timestamp_segments, config, total_duration) |
|
|
|
|
|
if (len(gpu_devices) > 1): |
|
whisperCallable.model_container.ensure_downloaded() |
|
|
|
|
|
|
|
merged_split = list(self._split(merged, len(gpu_devices))) |
|
|
|
|
|
parameters = [] |
|
segment_index = config.initial_segment_index |
|
|
|
processing_manager = multiprocessing.Manager() |
|
progress_queue = processing_manager.Queue() |
|
|
|
for i in range(len(gpu_devices)): |
|
|
|
|
|
device_segment_list = list(merged_split[i]) if i < len(merged_split) else [] |
|
device_id = gpu_devices[i] |
|
|
|
print("Device " + str(device_id) + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments") |
|
|
|
|
|
device_config = ParallelTranscriptionConfig(device_id, device_segment_list, segment_index, config) |
|
segment_index += len(device_segment_list) |
|
|
|
progress_listener_to_queue = _ProgressListenerToQueue(progress_queue) |
|
parameters.append([audio, whisperCallable, device_config, progress_listener_to_queue]); |
|
|
|
merged = { |
|
'text': '', |
|
'segments': [], |
|
'language': None |
|
} |
|
|
|
created_context = False |
|
|
|
perf_start_gpu = time.perf_counter() |
|
|
|
|
|
try: |
|
if (gpu_parallel_context is None): |
|
gpu_parallel_context = ParallelContext(len(gpu_devices)) |
|
created_context = True |
|
|
|
|
|
pool = gpu_parallel_context.get_pool() |
|
|
|
|
|
results_async = pool.starmap_async(self.transcribe, parameters) |
|
total_progress = 0 |
|
|
|
idx=0 |
|
while not results_async.ready(): |
|
try: |
|
delta = progress_queue.get(timeout=5) |
|
except Empty: |
|
continue |
|
|
|
total_progress += delta |
|
if progress_listener is not None: |
|
idx+=1 |
|
progress_listener.on_progress(total_progress, total_duration, desc=f"Transcribe parallel: {idx}, {total_progress:.2f}/{total_duration:.2f}") |
|
|
|
results = results_async.get() |
|
|
|
|
|
if progress_listener is not None: |
|
progress_listener.on_finished(desc=f"Transcribe parallel: {idx}, {total_progress:.2f}/{total_duration:.2f}.") |
|
|
|
for result in results: |
|
|
|
if (result['text'] is not None): |
|
merged['text'] += result['text'] |
|
if (result['segments'] is not None): |
|
merged['segments'].extend(result['segments']) |
|
if (result['language'] is not None): |
|
merged['language'] = result['language'] |
|
|
|
finally: |
|
|
|
if (gpu_parallel_context is not None): |
|
gpu_parallel_context.return_pool(pool) |
|
|
|
if (created_context): |
|
gpu_parallel_context.close() |
|
|
|
perf_end_gpu = time.perf_counter() |
|
print("\nParallel transcription took " + str(perf_end_gpu - perf_start_gpu) + " seconds") |
|
|
|
return merged |
|
|
|
def _get_merged_timestamps_parallel(self, transcription: AbstractTranscription, audio: str, config: TranscriptionConfig, total_duration: float, |
|
cpu_device_count: int, cpu_parallel_context: ParallelContext = None): |
|
parameters = [] |
|
|
|
chunk_size = max(total_duration / cpu_device_count, self.MIN_CPU_CHUNK_SIZE_SECONDS) |
|
chunk_start = 0 |
|
cpu_device_id = 0 |
|
|
|
perf_start_time = time.perf_counter() |
|
|
|
|
|
while (chunk_start < total_duration): |
|
chunk_end = min(chunk_start + chunk_size, total_duration) |
|
|
|
if (chunk_end - chunk_start < 1): |
|
|
|
break |
|
|
|
print("Parallel VAD: Executing chunk from " + str(chunk_start) + " to " + |
|
str(chunk_end) + " on CPU device " + str(cpu_device_id)) |
|
parameters.append([audio, config, chunk_start, chunk_end]); |
|
|
|
cpu_device_id += 1 |
|
chunk_start = chunk_end |
|
|
|
created_context = False |
|
|
|
|
|
try: |
|
if (cpu_parallel_context is None): |
|
cpu_parallel_context = ParallelContext(cpu_device_count) |
|
created_context = True |
|
|
|
|
|
pool = cpu_parallel_context.get_pool() |
|
|
|
|
|
results = pool.starmap(transcription.get_transcribe_timestamps, parameters) |
|
|
|
timestamps = [] |
|
|
|
|
|
for result in results: |
|
timestamps.extend(result) |
|
|
|
merged = transcription.get_merged_timestamps(timestamps, config, total_duration) |
|
|
|
perf_end_time = time.perf_counter() |
|
print("Parallel VAD processing took {} seconds".format(perf_end_time - perf_start_time)) |
|
return merged |
|
|
|
finally: |
|
|
|
if (cpu_parallel_context is not None): |
|
cpu_parallel_context.return_pool(pool) |
|
|
|
if (created_context): |
|
cpu_parallel_context.close() |
|
|
|
def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig, start_time: float, duration: float): |
|
return [] |
|
|
|
def get_merged_timestamps(self, timestamps: List[Dict[str, Any]], config: ParallelTranscriptionConfig, total_duration: float): |
|
|
|
if (config.override_timestamps is not None): |
|
print("(get_merged_timestamps) Using override timestamps of size " + str(len(config.override_timestamps))) |
|
return config.override_timestamps |
|
return super().get_merged_timestamps(timestamps, config, total_duration) |
|
|
|
def transcribe(self, audio: str, whisperCallable: AbstractWhisperCallback, config: ParallelTranscriptionConfig, |
|
progressListener: ProgressListener = None): |
|
|
|
if (os.environ.get("INITIALIZED", None) is None): |
|
os.environ["INITIALIZED"] = "1" |
|
|
|
|
|
|
|
if (config.device_id is not None): |
|
print("Using device " + config.device_id) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id |
|
|
|
return super().transcribe(audio, whisperCallable, config, progressListener) |
|
|
|
def _split(self, a, n): |
|
"""Split a list into n approximately equal parts.""" |
|
k, m = divmod(len(a), n) |
|
return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n)) |
|
|
|
|