awacke1 commited on
Commit
9e1cccd
Β·
1 Parent(s): f9d9bb9

Create backup-Llama.py

Browse files
Files changed (1) hide show
  1. backup-Llama.py +726 -0
backup-Llama.py ADDED
@@ -0,0 +1,726 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Imports
2
+ import base64
3
+ import glob
4
+ import json
5
+ import math
6
+ #import mistune
7
+ import openai
8
+ import os
9
+ import pytz
10
+ import re
11
+ import requests
12
+ import streamlit as st
13
+ import textract
14
+ import time
15
+ import zipfile
16
+ import huggingface_hub
17
+ import dotenv
18
+ from audio_recorder_streamlit import audio_recorder
19
+ from bs4 import BeautifulSoup
20
+ from collections import deque
21
+ from datetime import datetime
22
+ from dotenv import load_dotenv
23
+ from huggingface_hub import InferenceClient
24
+ from io import BytesIO
25
+ from langchain.chat_models import ChatOpenAI
26
+ from langchain.chains import ConversationalRetrievalChain
27
+ from langchain.embeddings import OpenAIEmbeddings
28
+ from langchain.memory import ConversationBufferMemory
29
+ from langchain.text_splitter import CharacterTextSplitter
30
+ from langchain.vectorstores import FAISS
31
+ from openai import ChatCompletion
32
+ from PyPDF2 import PdfReader
33
+ from templates import bot_template, css, user_template
34
+ from xml.etree import ElementTree as ET
35
+
36
+ def add_Med_Licensing_Exam_Dataset():
37
+ import streamlit as st
38
+ from datasets import load_dataset
39
+ dataset = load_dataset("augtoma/usmle_step_1")['test'] # Using 'test' split
40
+ st.title("USMLE Step 1 Dataset Viewer")
41
+ if len(dataset) == 0:
42
+ st.write("😒 The dataset is empty.")
43
+ else:
44
+ st.write("""
45
+ πŸ” Use the search box to filter questions or use the grid to scroll through the dataset.
46
+ """)
47
+
48
+ # πŸ‘©β€πŸ”¬ Search Box
49
+ search_term = st.text_input("Search for a specific question:", "")
50
+ # πŸŽ› Pagination
51
+ records_per_page = 100
52
+ num_records = len(dataset)
53
+ num_pages = max(int(num_records / records_per_page), 1)
54
+
55
+ # Skip generating the slider if num_pages is 1 (i.e., all records fit in one page)
56
+ if num_pages > 1:
57
+ page_number = st.select_slider("Select page:", options=list(range(1, num_pages + 1)))
58
+ else:
59
+ page_number = 1 # Only one page
60
+
61
+ # πŸ“Š Display Data
62
+ start_idx = (page_number - 1) * records_per_page
63
+ end_idx = start_idx + records_per_page
64
+
65
+ # πŸ§ͺ Apply the Search Filter
66
+ filtered_data = []
67
+ for record in dataset[start_idx:end_idx]:
68
+ if isinstance(record, dict) and 'text' in record and 'id' in record:
69
+ if search_term:
70
+ if search_term.lower() in record['text'].lower():
71
+ filtered_data.append(record)
72
+ else:
73
+ filtered_data.append(record)
74
+
75
+ # 🌐 Render the Grid
76
+ for record in filtered_data:
77
+ st.write(f"## Question ID: {record['id']}")
78
+ st.write(f"### Question:")
79
+ st.write(f"{record['text']}")
80
+ st.write(f"### Answer:")
81
+ st.write(f"{record['answer']}")
82
+ st.write("---")
83
+
84
+ st.write(f"😊 Total Records: {num_records} | πŸ“„ Displaying {start_idx+1} to {min(end_idx, num_records)}")
85
+
86
+
87
+
88
+ # 1. Constants and Top Level UI Variables
89
+
90
+ # My Inference API Copy
91
+ # API_URL = 'https://qe55p8afio98s0u3.us-east-1.aws.endpoints.huggingface.cloud' # Dr Llama
92
+ # Original:
93
+ API_URL = "https://api-inference.huggingface.co/models/meta-llama/Llama-2-7b-chat-hf"
94
+ API_KEY = os.getenv('API_KEY')
95
+ MODEL1="meta-llama/Llama-2-7b-chat-hf"
96
+ MODEL1URL="https://huggingface.co/meta-llama/Llama-2-7b-chat-hf"
97
+ HF_KEY = os.getenv('HF_KEY')
98
+ headers = {
99
+ "Authorization": f"Bearer {HF_KEY}",
100
+ "Content-Type": "application/json"
101
+ }
102
+ key = os.getenv('OPENAI_API_KEY')
103
+ prompt = f"Write instructions to teach anyone to write a discharge plan. List the entities, features and relationships to CCDA and FHIR objects in boldface."
104
+ # page config and sidebar declares up front allow all other functions to see global class variables
105
+ # st.set_page_config(page_title="GPT Streamlit Document Reasoner", layout="wide")
106
+ should_save = st.sidebar.checkbox("πŸ’Ύ Save", value=True, help="Save your session data.")
107
+
108
+ # 2. Prompt label button demo for LLM
109
+ def add_witty_humor_buttons():
110
+ with st.expander("Wit and Humor 🀣", expanded=True):
111
+ # Tip about the Dromedary family
112
+ st.markdown("πŸ”¬ **Fun Fact**: Dromedaries, part of the camel family, have a single hump and are adapted to arid environments. Their 'superpowers' include the ability to survive without water for up to 7 days, thanks to their specialized blood cells and water storage in their hump.")
113
+
114
+ # Define button descriptions
115
+ descriptions = {
116
+ "Generate Limericks πŸ˜‚": "Write ten random adult limericks based on quotes that are tweet length and make you laugh 🎭",
117
+ "Wise Quotes πŸ§™": "Generate ten wise quotes that are tweet length πŸ¦‰",
118
+ "Funny Rhymes 🎀": "Create ten funny rhymes that are tweet length 🎢",
119
+ "Medical Jokes πŸ’‰": "Create ten medical jokes that are tweet length πŸ₯",
120
+ "Minnesota Humor ❄️": "Create ten jokes about Minnesota that are tweet length 🌨️",
121
+ "Top Funny Stories πŸ“–": "Create ten funny stories that are tweet length πŸ“š",
122
+ "More Funny Rhymes πŸŽ™οΈ": "Create ten more funny rhymes that are tweet length 🎡"
123
+ }
124
+
125
+ # Create columns
126
+ col1, col2, col3 = st.columns([1, 1, 1], gap="small")
127
+
128
+ # Add buttons to columns
129
+ if col1.button("Generate Limericks πŸ˜‚"):
130
+ StreamLLMChatResponse(descriptions["Generate Limericks πŸ˜‚"])
131
+
132
+ if col2.button("Wise Quotes πŸ§™"):
133
+ StreamLLMChatResponse(descriptions["Wise Quotes πŸ§™"])
134
+
135
+ if col3.button("Funny Rhymes 🎀"):
136
+ StreamLLMChatResponse(descriptions["Funny Rhymes 🎀"])
137
+
138
+ col4, col5, col6 = st.columns([1, 1, 1], gap="small")
139
+
140
+ if col4.button("Medical Jokes πŸ’‰"):
141
+ StreamLLMChatResponse(descriptions["Medical Jokes πŸ’‰"])
142
+
143
+ if col5.button("Minnesota Humor ❄️"):
144
+ StreamLLMChatResponse(descriptions["Minnesota Humor ❄️"])
145
+
146
+ if col6.button("Top Funny Stories πŸ“–"):
147
+ StreamLLMChatResponse(descriptions["Top Funny Stories πŸ“–"])
148
+
149
+ col7 = st.columns(1, gap="small")
150
+
151
+ if col7[0].button("More Funny Rhymes πŸŽ™οΈ"):
152
+ StreamLLMChatResponse(descriptions["More Funny Rhymes πŸŽ™οΈ"])
153
+
154
+ def addDocumentHTML5(result):
155
+ documentHTML5='''
156
+ <!DOCTYPE html>
157
+ <html>
158
+ <head>
159
+ <title>Read It Aloud</title>
160
+ <script type="text/javascript">
161
+ function readAloud() {
162
+ const text = document.getElementById("textArea").value;
163
+ const speech = new SpeechSynthesisUtterance(text);
164
+ window.speechSynthesis.speak(speech);
165
+ }
166
+ </script>
167
+ </head>
168
+ <body>
169
+ <h1>πŸ”Š Read It Aloud</h1>
170
+ <textarea id="textArea" rows="10" cols="80">
171
+ '''
172
+ documentHTML5 = documentHTML5 + result
173
+ documentHTML5 = documentHTML5 + '''
174
+ </textarea>
175
+ <br>
176
+ <button onclick="readAloud()">πŸ”Š Read Aloud</button>
177
+ </body>
178
+ </html>
179
+ '''
180
+
181
+ import streamlit.components.v1 as components # Import Streamlit
182
+ components.html(documentHTML5, width=1280, height=1024)
183
+ return result
184
+
185
+
186
+ # 3. Stream Llama Response
187
+ # @st.cache_resource
188
+ def StreamLLMChatResponse(prompt):
189
+
190
+ try:
191
+ endpoint_url = API_URL
192
+ hf_token = API_KEY
193
+ client = InferenceClient(endpoint_url, token=hf_token)
194
+ gen_kwargs = dict(
195
+ max_new_tokens=512,
196
+ top_k=30,
197
+ top_p=0.9,
198
+ temperature=0.2,
199
+ repetition_penalty=1.02,
200
+ stop_sequences=["\nUser:", "<|endoftext|>", "</s>"],
201
+ )
202
+ stream = client.text_generation(prompt, stream=True, details=True, **gen_kwargs)
203
+ report=[]
204
+ res_box = st.empty()
205
+ collected_chunks=[]
206
+ collected_messages=[]
207
+ allresults=''
208
+ for r in stream:
209
+ if r.token.special:
210
+ continue
211
+ if r.token.text in gen_kwargs["stop_sequences"]:
212
+ break
213
+ collected_chunks.append(r.token.text)
214
+ chunk_message = r.token.text
215
+ collected_messages.append(chunk_message)
216
+ try:
217
+ report.append(r.token.text)
218
+ if len(r.token.text) > 0:
219
+ result="".join(report).strip()
220
+ res_box.markdown(f'*{result}*')
221
+
222
+ except:
223
+ st.write('Stream llm issue')
224
+ add_documentHTML5(result)
225
+ except:
226
+ st.write('Llama model is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
227
+
228
+ # 4. Run query with payload
229
+ def query(payload):
230
+ response = requests.post(API_URL, headers=headers, json=payload)
231
+ st.markdown(response.json())
232
+ return response.json()
233
+ def get_output(prompt):
234
+ return query({"inputs": prompt})
235
+
236
+ # 5. Auto name generated output files from time and content
237
+ def generate_filename(prompt, file_type):
238
+ central = pytz.timezone('US/Central')
239
+ safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
240
+ replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
241
+ safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:45]
242
+ return f"{safe_date_time}_{safe_prompt}.{file_type}"
243
+
244
+ # 6. Speech transcription via OpenAI service
245
+ def transcribe_audio(openai_key, file_path, model):
246
+ openai.api_key = openai_key
247
+ OPENAI_API_URL = "https://api.openai.com/v1/audio/transcriptions"
248
+ headers = {
249
+ "Authorization": f"Bearer {openai_key}",
250
+ }
251
+ with open(file_path, 'rb') as f:
252
+ data = {'file': f}
253
+ response = requests.post(OPENAI_API_URL, headers=headers, files=data, data={'model': model})
254
+ if response.status_code == 200:
255
+ st.write(response.json())
256
+ chatResponse = chat_with_model(response.json().get('text'), '') # *************************************
257
+ transcript = response.json().get('text')
258
+ filename = generate_filename(transcript, 'txt')
259
+ response = chatResponse
260
+ user_prompt = transcript
261
+ create_file(filename, user_prompt, response, should_save)
262
+ return transcript
263
+ else:
264
+ st.write(response.json())
265
+ st.error("Error in API call.")
266
+ return None
267
+
268
+ # 7. Auto stop on silence audio control for recording WAV files
269
+ def save_and_play_audio(audio_recorder):
270
+ audio_bytes = audio_recorder(key='audio_recorder')
271
+ if audio_bytes:
272
+ filename = generate_filename("Recording", "wav")
273
+ with open(filename, 'wb') as f:
274
+ f.write(audio_bytes)
275
+ st.audio(audio_bytes, format="audio/wav")
276
+ return filename
277
+ return None
278
+
279
+ # 8. File creator that interprets type and creates output file for text, markdown and code
280
+ def create_file(filename, prompt, response, should_save=True):
281
+ if not should_save:
282
+ return
283
+ base_filename, ext = os.path.splitext(filename)
284
+ has_python_code = bool(re.search(r"```python([\s\S]*?)```", response))
285
+ if ext in ['.txt', '.htm', '.md']:
286
+ with open(f"{base_filename}.md", 'w') as file:
287
+ content = prompt.strip() + '\r\n' + response
288
+ file.write(content)
289
+ if has_python_code:
290
+ python_code = re.findall(r"```python([\s\S]*?)```", response)[0].strip()
291
+ with open(f"{base_filename}-Code.py", 'w') as file:
292
+ file.write(python_code)
293
+ with open(f"{base_filename}.md", 'w') as file:
294
+ content = prompt.strip() + '\r\n' + response
295
+ file.write(content)
296
+
297
+ def truncate_document(document, length):
298
+ return document[:length]
299
+ def divide_document(document, max_length):
300
+ return [document[i:i+max_length] for i in range(0, len(document), max_length)]
301
+
302
+ # 9. Sidebar with UI controls to review and re-run prompts and continue responses
303
+ @st.cache_resource
304
+ def get_table_download_link(file_path):
305
+ with open(file_path, 'r') as file:
306
+ data = file.read()
307
+
308
+ b64 = base64.b64encode(data.encode()).decode()
309
+ file_name = os.path.basename(file_path)
310
+ ext = os.path.splitext(file_name)[1] # get the file extension
311
+ if ext == '.txt':
312
+ mime_type = 'text/plain'
313
+ elif ext == '.py':
314
+ mime_type = 'text/plain'
315
+ elif ext == '.xlsx':
316
+ mime_type = 'text/plain'
317
+ elif ext == '.csv':
318
+ mime_type = 'text/plain'
319
+ elif ext == '.htm':
320
+ mime_type = 'text/html'
321
+ elif ext == '.md':
322
+ mime_type = 'text/markdown'
323
+ else:
324
+ mime_type = 'application/octet-stream' # general binary data type
325
+ href = f'<a href="data:{mime_type};base64,{b64}" target="_blank" download="{file_name}">{file_name}</a>'
326
+ return href
327
+
328
+
329
+ def CompressXML(xml_text):
330
+ root = ET.fromstring(xml_text)
331
+ for elem in list(root.iter()):
332
+ if isinstance(elem.tag, str) and 'Comment' in elem.tag:
333
+ elem.parent.remove(elem)
334
+ return ET.tostring(root, encoding='unicode', method="xml")
335
+
336
+ # 10. Read in and provide UI for past files
337
+ @st.cache_resource
338
+ def read_file_content(file,max_length):
339
+ if file.type == "application/json":
340
+ content = json.load(file)
341
+ return str(content)
342
+ elif file.type == "text/html" or file.type == "text/htm":
343
+ content = BeautifulSoup(file, "html.parser")
344
+ return content.text
345
+ elif file.type == "application/xml" or file.type == "text/xml":
346
+ tree = ET.parse(file)
347
+ root = tree.getroot()
348
+ xml = CompressXML(ET.tostring(root, encoding='unicode'))
349
+ return xml
350
+ elif file.type == "text/markdown" or file.type == "text/md":
351
+ md = mistune.create_markdown()
352
+ content = md(file.read().decode())
353
+ return content
354
+ elif file.type == "text/plain":
355
+ return file.getvalue().decode()
356
+ else:
357
+ return ""
358
+
359
+ # 11. Chat with GPT - Caution on quota - now favoring fastest AI pipeline STT Whisper->LLM Llama->TTS
360
+ @st.cache_resource
361
+ def chat_with_model(prompt, document_section, model_choice='gpt-3.5-turbo'):
362
+ model = model_choice
363
+ conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
364
+ conversation.append({'role': 'user', 'content': prompt})
365
+ if len(document_section)>0:
366
+ conversation.append({'role': 'assistant', 'content': document_section})
367
+ start_time = time.time()
368
+ report = []
369
+ res_box = st.empty()
370
+ collected_chunks = []
371
+ collected_messages = []
372
+ for chunk in openai.ChatCompletion.create(model='gpt-3.5-turbo', messages=conversation, temperature=0.5, stream=True):
373
+ collected_chunks.append(chunk)
374
+ chunk_message = chunk['choices'][0]['delta']
375
+ collected_messages.append(chunk_message)
376
+ content=chunk["choices"][0].get("delta",{}).get("content")
377
+ try:
378
+ report.append(content)
379
+ if len(content) > 0:
380
+ result = "".join(report).strip()
381
+ res_box.markdown(f'*{result}*')
382
+ except:
383
+ st.write(' ')
384
+ full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
385
+ st.write("Elapsed time:")
386
+ st.write(time.time() - start_time)
387
+ return full_reply_content
388
+
389
+ # 12. Embedding VectorDB for LLM query of documents to text to compress inputs and prompt together as Chat memory using Langchain
390
+ @st.cache_resource
391
+ def chat_with_file_contents(prompt, file_content, model_choice='gpt-3.5-turbo'):
392
+ conversation = [{'role': 'system', 'content': 'You are a helpful assistant.'}]
393
+ conversation.append({'role': 'user', 'content': prompt})
394
+ if len(file_content)>0:
395
+ conversation.append({'role': 'assistant', 'content': file_content})
396
+ response = openai.ChatCompletion.create(model=model_choice, messages=conversation)
397
+ return response['choices'][0]['message']['content']
398
+
399
+ def extract_mime_type(file):
400
+ if isinstance(file, str):
401
+ pattern = r"type='(.*?)'"
402
+ match = re.search(pattern, file)
403
+ if match:
404
+ return match.group(1)
405
+ else:
406
+ raise ValueError(f"Unable to extract MIME type from {file}")
407
+ elif isinstance(file, streamlit.UploadedFile):
408
+ return file.type
409
+ else:
410
+ raise TypeError("Input should be a string or a streamlit.UploadedFile object")
411
+
412
+ def extract_file_extension(file):
413
+ # get the file name directly from the UploadedFile object
414
+ file_name = file.name
415
+ pattern = r".*?\.(.*?)$"
416
+ match = re.search(pattern, file_name)
417
+ if match:
418
+ return match.group(1)
419
+ else:
420
+ raise ValueError(f"Unable to extract file extension from {file_name}")
421
+
422
+ # Normalize input as text from PDF and other formats
423
+ @st.cache_resource
424
+ def pdf2txt(docs):
425
+ text = ""
426
+ for file in docs:
427
+ file_extension = extract_file_extension(file)
428
+ st.write(f"File type extension: {file_extension}")
429
+ if file_extension.lower() in ['py', 'txt', 'html', 'htm', 'xml', 'json']:
430
+ text += file.getvalue().decode('utf-8')
431
+ elif file_extension.lower() == 'pdf':
432
+ from PyPDF2 import PdfReader
433
+ pdf = PdfReader(BytesIO(file.getvalue()))
434
+ for page in range(len(pdf.pages)):
435
+ text += pdf.pages[page].extract_text() # new PyPDF2 syntax
436
+ return text
437
+
438
+ def txt2chunks(text):
439
+ text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
440
+ return text_splitter.split_text(text)
441
+
442
+ # Vector Store using FAISS
443
+ @st.cache_resource
444
+ def vector_store(text_chunks):
445
+ embeddings = OpenAIEmbeddings(openai_api_key=key)
446
+ return FAISS.from_texts(texts=text_chunks, embedding=embeddings)
447
+
448
+ # Memory and Retrieval chains
449
+ @st.cache_resource
450
+ def get_chain(vectorstore):
451
+ llm = ChatOpenAI()
452
+ memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
453
+ return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory)
454
+
455
+ def process_user_input(user_question):
456
+ response = st.session_state.conversation({'question': user_question})
457
+ st.session_state.chat_history = response['chat_history']
458
+ for i, message in enumerate(st.session_state.chat_history):
459
+ template = user_template if i % 2 == 0 else bot_template
460
+ st.write(template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
461
+ filename = generate_filename(user_question, 'txt')
462
+ response = message.content
463
+ user_prompt = user_question
464
+ create_file(filename, user_prompt, response, should_save)
465
+
466
+ def divide_prompt(prompt, max_length):
467
+ words = prompt.split()
468
+ chunks = []
469
+ current_chunk = []
470
+ current_length = 0
471
+ for word in words:
472
+ if len(word) + current_length <= max_length:
473
+ current_length += len(word) + 1
474
+ current_chunk.append(word)
475
+ else:
476
+ chunks.append(' '.join(current_chunk))
477
+ current_chunk = [word]
478
+ current_length = len(word)
479
+ chunks.append(' '.join(current_chunk))
480
+ return chunks
481
+
482
+
483
+ # 13. Provide way of saving all and deleting all to give way of reviewing output and saving locally before clearing it
484
+
485
+ @st.cache_resource
486
+ def create_zip_of_files(files):
487
+ zip_name = "all_files.zip"
488
+ with zipfile.ZipFile(zip_name, 'w') as zipf:
489
+ for file in files:
490
+ zipf.write(file)
491
+ return zip_name
492
+
493
+ @st.cache_resource
494
+ def get_zip_download_link(zip_file):
495
+ with open(zip_file, 'rb') as f:
496
+ data = f.read()
497
+ b64 = base64.b64encode(data).decode()
498
+ href = f'<a href="data:application/zip;base64,{b64}" download="{zip_file}">Download All</a>'
499
+ return href
500
+
501
+ # 14. Inference Endpoints for Whisper (best fastest STT) on NVIDIA T4 and Llama (best fastest AGI LLM) on NVIDIA A10
502
+ # My Inference Endpoint
503
+ API_URL_IE = f'https://tonpixzfvq3791u9.us-east-1.aws.endpoints.huggingface.cloud'
504
+ # Original
505
+ API_URL_IE = "https://api-inference.huggingface.co/models/openai/whisper-small.en"
506
+ MODEL2 = "openai/whisper-small.en"
507
+ MODEL2_URL = "https://huggingface.co/openai/whisper-small.en"
508
+ #headers = {
509
+ # "Authorization": "Bearer XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
510
+ # "Content-Type": "audio/wav"
511
+ #}
512
+ HF_KEY = os.getenv('HF_KEY')
513
+ headers = {
514
+ "Authorization": f"Bearer {HF_KEY}",
515
+ "Content-Type": "audio/wav"
516
+ }
517
+
518
+ #@st.cache_resource
519
+ def query(filename):
520
+ with open(filename, "rb") as f:
521
+ data = f.read()
522
+ response = requests.post(API_URL_IE, headers=headers, data=data)
523
+ return response.json()
524
+
525
+ def generate_filename(prompt, file_type):
526
+ central = pytz.timezone('US/Central')
527
+ safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
528
+ replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
529
+ safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
530
+ return f"{safe_date_time}_{safe_prompt}.{file_type}"
531
+
532
+ # 15. Audio recorder to Wav file
533
+ def save_and_play_audio(audio_recorder):
534
+ audio_bytes = audio_recorder()
535
+ if audio_bytes:
536
+ filename = generate_filename("Recording", "wav")
537
+ with open(filename, 'wb') as f:
538
+ f.write(audio_bytes)
539
+ st.audio(audio_bytes, format="audio/wav")
540
+ return filename
541
+
542
+ # 16. Speech transcription to file output
543
+ def transcribe_audio(filename):
544
+ output = query(filename)
545
+ return output
546
+
547
+ def whisper_main():
548
+ st.title("Speech to Text")
549
+ st.write("Record your speech and get the text.")
550
+
551
+ # Audio, transcribe, GPT:
552
+ filename = save_and_play_audio(audio_recorder)
553
+ if filename is not None:
554
+ transcription = transcribe_audio(filename)
555
+ try:
556
+ transcription = transcription['text']
557
+ except:
558
+ st.write('Whisper model is asleep. Starting up now on T4 GPU - please give 5 minutes then retry as it scales up from zero to activate running container(s).')
559
+
560
+ st.write(transcription)
561
+ response = StreamLLMChatResponse(transcription)
562
+ # st.write(response) - redundant with streaming result?
563
+ filename = generate_filename(transcription, ".txt")
564
+ create_file(filename, transcription, response, should_save)
565
+ #st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
566
+
567
+
568
+ # 17. Main
569
+ def main():
570
+
571
+ st.title("AI Drome Llama")
572
+ prompt = f"Write ten funny jokes that are tweet length stories that make you laugh. Show as markdown outline with emojis for each."
573
+
574
+ # Add Wit and Humor buttons
575
+ add_witty_humor_buttons()
576
+
577
+ example_input = st.text_input("Enter your example text:", value=prompt, help="Enter text to get a response from DromeLlama.")
578
+ if st.button("Run Prompt With DromeLlama", help="Click to run the prompt."):
579
+ try:
580
+ StreamLLMChatResponse(example_input)
581
+ except:
582
+ st.write('DromeLlama is asleep. Starting up now on A10 - please give 5 minutes then retry as KEDA scales up from zero to activate running container(s).')
583
+
584
+ openai.api_key = os.getenv('OPENAI_KEY')
585
+ menu = ["txt", "htm", "xlsx", "csv", "md", "py"]
586
+ choice = st.sidebar.selectbox("Output File Type:", menu)
587
+ model_choice = st.sidebar.radio("Select Model:", ('gpt-3.5-turbo', 'gpt-3.5-turbo-0301'))
588
+ user_prompt = st.text_area("Enter prompts, instructions & questions:", '', height=100)
589
+ collength, colupload = st.columns([2,3]) # adjust the ratio as needed
590
+ with collength:
591
+ max_length = st.slider("File section length for large files", min_value=1000, max_value=128000, value=12000, step=1000)
592
+ with colupload:
593
+ uploaded_file = st.file_uploader("Add a file for context:", type=["pdf", "xml", "json", "xlsx", "csv", "html", "htm", "md", "txt"])
594
+ document_sections = deque()
595
+ document_responses = {}
596
+ if uploaded_file is not None:
597
+ file_content = read_file_content(uploaded_file, max_length)
598
+ document_sections.extend(divide_document(file_content, max_length))
599
+ if len(document_sections) > 0:
600
+ if st.button("πŸ‘οΈ View Upload"):
601
+ st.markdown("**Sections of the uploaded file:**")
602
+ for i, section in enumerate(list(document_sections)):
603
+ st.markdown(f"**Section {i+1}**\n{section}")
604
+ st.markdown("**Chat with the model:**")
605
+ for i, section in enumerate(list(document_sections)):
606
+ if i in document_responses:
607
+ st.markdown(f"**Section {i+1}**\n{document_responses[i]}")
608
+ else:
609
+ if st.button(f"Chat about Section {i+1}"):
610
+ st.write('Reasoning with your inputs...')
611
+ response = chat_with_model(user_prompt, section, model_choice)
612
+ st.write('Response:')
613
+ st.write(response)
614
+ document_responses[i] = response
615
+ filename = generate_filename(f"{user_prompt}_section_{i+1}", choice)
616
+ create_file(filename, user_prompt, response, should_save)
617
+ st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
618
+ if st.button('πŸ’¬ Chat'):
619
+ st.write('Reasoning with your inputs...')
620
+ user_prompt_sections = divide_prompt(user_prompt, max_length)
621
+ full_response = ''
622
+ for prompt_section in user_prompt_sections:
623
+ response = chat_with_model(prompt_section, ''.join(list(document_sections)), model_choice)
624
+ full_response += response + '\n' # Combine the responses
625
+ response = full_response
626
+ st.write('Response:')
627
+ st.write(response)
628
+ filename = generate_filename(user_prompt, choice)
629
+ create_file(filename, user_prompt, response, should_save)
630
+ st.sidebar.markdown(get_table_download_link(filename), unsafe_allow_html=True)
631
+
632
+ # Compose a file sidebar of past encounters
633
+ all_files = glob.glob("*.*")
634
+ all_files = [file for file in all_files if len(os.path.splitext(file)[0]) >= 20] # exclude files with short names
635
+ all_files.sort(key=lambda x: (os.path.splitext(x)[1], x), reverse=True) # sort by file type and file name in descending order
636
+ if st.sidebar.button("πŸ—‘ Delete All"):
637
+ for file in all_files:
638
+ os.remove(file)
639
+ st.experimental_rerun()
640
+ if st.sidebar.button("⬇️ Download All"):
641
+ zip_file = create_zip_of_files(all_files)
642
+ st.sidebar.markdown(get_zip_download_link(zip_file), unsafe_allow_html=True)
643
+ file_contents=''
644
+ next_action=''
645
+ for file in all_files:
646
+ col1, col2, col3, col4, col5 = st.sidebar.columns([1,6,1,1,1]) # adjust the ratio as needed
647
+ with col1:
648
+ if st.button("🌐", key="md_"+file): # md emoji button
649
+ with open(file, 'r') as f:
650
+ file_contents = f.read()
651
+ next_action='md'
652
+ with col2:
653
+ st.markdown(get_table_download_link(file), unsafe_allow_html=True)
654
+ with col3:
655
+ if st.button("πŸ“‚", key="open_"+file): # open emoji button
656
+ with open(file, 'r') as f:
657
+ file_contents = f.read()
658
+ next_action='open'
659
+ with col4:
660
+ if st.button("πŸ”", key="read_"+file): # search emoji button
661
+ with open(file, 'r') as f:
662
+ file_contents = f.read()
663
+ next_action='search'
664
+ with col5:
665
+ if st.button("πŸ—‘", key="delete_"+file):
666
+ os.remove(file)
667
+ st.experimental_rerun()
668
+
669
+
670
+ if len(file_contents) > 0:
671
+ if next_action=='open':
672
+ file_content_area = st.text_area("File Contents:", file_contents, height=500)
673
+ addDocumentHTML5(file_contents)
674
+ if next_action=='md':
675
+ st.markdown(file_contents)
676
+ addDocumentHTML5(file_contents)
677
+ if next_action=='search':
678
+ file_content_area = st.text_area("File Contents:", file_contents, height=500)
679
+ st.write('Reasoning with your inputs...')
680
+
681
+ # new - llama
682
+ response = StreamLLMChatResponse(file_contents)
683
+ filename = generate_filename(user_prompt, ".md")
684
+ #create_file(filename, response, '', should_save)
685
+ #addDocumentHTML5(file_contents)
686
+ addDocumentHTML5(response)
687
+
688
+ # old - gpt
689
+ #response = chat_with_model(user_prompt, file_contents, model_choice)
690
+ #filename = generate_filename(file_contents, choice)
691
+ #create_file(filename, user_prompt, response, should_save)
692
+
693
+ st.experimental_rerun()
694
+
695
+ # Feedback
696
+ # Step: Give User a Way to Upvote or Downvote
697
+ feedback = st.radio("Step 8: Give your feedback", ("πŸ‘ Upvote", "πŸ‘Ž Downvote"))
698
+ if feedback == "πŸ‘ Upvote":
699
+ st.write("You upvoted πŸ‘. Thank you for your feedback!")
700
+ else:
701
+ st.write("You downvoted πŸ‘Ž. Thank you for your feedback!")
702
+
703
+ load_dotenv()
704
+ st.write(css, unsafe_allow_html=True)
705
+ st.header("Chat with documents :books:")
706
+ user_question = st.text_input("Ask a question about your documents:")
707
+ if user_question:
708
+ process_user_input(user_question)
709
+ with st.sidebar:
710
+ st.subheader("Your documents")
711
+ docs = st.file_uploader("import documents", accept_multiple_files=True)
712
+ with st.spinner("Processing"):
713
+ raw = pdf2txt(docs)
714
+ if len(raw) > 0:
715
+ length = str(len(raw))
716
+ text_chunks = txt2chunks(raw)
717
+ vectorstore = vector_store(text_chunks)
718
+ st.session_state.conversation = get_chain(vectorstore)
719
+ st.markdown('# AI Search Index of Length:' + length + ' Created.') # add timing
720
+ filename = generate_filename(raw, 'txt')
721
+ create_file(filename, raw, '', should_save)
722
+
723
+ # 18. Run AI Pipeline
724
+ if __name__ == "__main__":
725
+ whisper_main()
726
+ main()