DeepResearchEvaluator / backup8.app.py
awacke1's picture
Create backup8.app.py
030c313 verified
raw
history blame
29.1 kB
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
from streamlit.runtime.scriptrunner import get_script_run_ctx
import asyncio
import edge_tts
# 🎯 1. Core Configuration & Setup
st.set_page_config(
page_title="🚲BikeAI🏆 Claude/GPT Research",
page_icon="🚲🏆",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': "🚲BikeAI🏆 Claude/GPT Research AI"
}
)
load_dotenv()
# 🔑 2. API Setup & Clients
openai_api_key = os.getenv('OPENAI_API_KEY', "")
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
xai_key = os.getenv('xai',"")
if 'OPENAI_API_KEY' in st.secrets:
openai_api_key = st.secrets['OPENAI_API_KEY']
if 'ANTHROPIC_API_KEY' in st.secrets:
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
openai.api_key = openai_api_key
claude_client = anthropic.Anthropic(api_key=anthropic_key)
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
HF_KEY = os.getenv('HF_KEY')
API_URL = os.getenv('API_URL')
# 📝 3. Session State Management
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if 'openai_model' not in st.session_state:
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
if 'messages' not in st.session_state:
st.session_state['messages'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'editing_file' not in st.session_state:
st.session_state['editing_file'] = None
if 'edit_new_name' not in st.session_state:
st.session_state['edit_new_name'] = ""
if 'edit_new_content' not in st.session_state:
st.session_state['edit_new_content'] = ""
if 'viewing_prefix' not in st.session_state:
st.session_state['viewing_prefix'] = None
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
if 'old_val' not in st.session_state:
st.session_state['old_val'] = None
# 🎨 4. Custom CSS
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button {
margin-right: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
FILE_EMOJIS = {
"md": "📝",
"mp3": "🎵",
}
# 🧠 5. High-Information Content Extraction
def get_high_info_terms(text: str) -> list:
"""Extract high-information terms from text, including key phrases."""
stop_words = set([
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
])
key_phrases = [
'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
'personal assistant', 'natural language', 'computer vision', 'data science',
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
'large language model', 'transformer model', 'attention mechanism',
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
'cognitive science', 'human computer', 'decision making', 'arxiv search',
'research paper', 'scientific study', 'empirical analysis'
]
# Identify key phrases
#preserved_phrases = []
#lower_text = text.lower()
#for phrase in key_phrases:
# if phrase in lower_text:
# preserved_phrases.append(phrase)
# text = text.replace(phrase, '')
# Extract individual words
words = re.findall(r'\b\w+(?:-\w+)*\b', text)
high_info_words = [
word.lower() for word in words
if len(word) > 3
and word.lower() not in stop_words
and not word.isdigit()
and any(c.isalpha() for c in word)
]
#all_terms = preserved_phrases + high_info_words
all_terms = high_info_words
seen = set()
unique_terms = []
for term in all_terms:
if term not in seen:
seen.add(term)
unique_terms.append(term)
max_terms = 5
return unique_terms[:max_terms]
def clean_text_for_filename(text: str) -> str:
"""Remove punctuation and short filler words, return a compact string."""
text = text.lower()
text = re.sub(r'[^\w\s-]', '', text)
words = text.split()
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
filtered = [w for w in words if len(w)>3 and w not in stop_short]
return '_'.join(filtered)[:200]
# 📁 6. File Operations
def generate_filename(prompt, response, file_type="md"):
"""
Generate filename with meaningful terms and short dense clips from prompt & response.
The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
"""
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
combined = (prompt + " " + response).strip()
info_terms = get_high_info_terms(combined)
# Include a short snippet from prompt and response
snippet = (prompt[:100] + " " + response[:100]).strip()
snippet_cleaned = clean_text_for_filename(snippet)
# Combine info terms and snippet
name_parts = info_terms + [snippet_cleaned]
full_name = '_'.join(name_parts)
# Trim to ~150 chars
if len(full_name) > 150:
full_name = full_name[:150]
filename = f"{prefix}{full_name}.{file_type}"
return filename
def create_file(prompt, response, file_type="md"):
"""Create file with intelligent naming"""
filename = generate_filename(prompt.strip(), response.strip(), file_type)
with open(filename, 'w', encoding='utf-8') as f:
f.write(prompt + "\n\n" + response)
return filename
def get_download_link(file):
"""Generate download link for file"""
with open(file, "rb") as f:
b64 = base64.b64encode(f.read()).decode()
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
# 🔊 7. Audio Processing
def clean_for_speech(text: str) -> str:
"""Clean text for speech synthesis"""
text = text.replace("\n", " ")
text = text.replace("</s>", " ")
text = text.replace("#", "")
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
text = re.sub(r"\s+", " ", text).strip()
return text
@st.cache_resource
def speech_synthesis_html(result):
"""Create HTML for speech synthesis"""
html_code = f"""
<html><body>
<script>
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
window.speechSynthesis.speak(msg);
</script>
</body></html>
"""
components.html(html_code, height=0)
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Generate audio using Edge TTS"""
text = clean_for_speech(text)
if not text.strip():
return None
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
out_fn = generate_filename(text, text, "mp3")
await communicate.save(out_fn)
return out_fn
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
"""Wrapper for edge TTS generation"""
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
def play_and_download_audio(file_path):
"""Play and provide download link for audio"""
if file_path and os.path.exists(file_path):
st.audio(file_path)
dl_link = f'<a href="data:audio/mpeg;base64,{base64.b64encode(open(file_path,"rb").read()).decode()}" download="{os.path.basename(file_path)}">Download {os.path.basename(file_path)}</a>'
st.markdown(dl_link, unsafe_allow_html=True)
# 🎬 8. Media Processing
def process_image(image_path, user_prompt):
"""Process image with GPT-4V"""
with open(image_path, "rb") as imgf:
image_data = imgf.read()
b64img = base64.b64encode(image_data).decode("utf-8")
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
]}
],
temperature=0.0,
)
return resp.choices[0].message.content
def process_audio(audio_path):
"""Process audio with Whisper"""
with open(audio_path, "rb") as f:
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
st.session_state.messages.append({"role": "user", "content": transcription.text})
return transcription.text
def process_video(video_path, seconds_per_frame=1):
"""Extract frames from video"""
vid = cv2.VideoCapture(video_path)
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vid.get(cv2.CAP_PROP_FPS)
skip = int(fps*seconds_per_frame)
frames_b64 = []
for i in range(0, total, skip):
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = vid.read()
if not ret:
break
_, buf = cv2.imencode(".jpg", frame)
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
vid.release()
return frames_b64
def process_video_with_gpt(video_path, prompt):
"""Analyze video frames with GPT-4V"""
frames = process_video(video_path)
resp = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=[
{"role":"system","content":"Analyze video frames."},
{"role":"user","content":[
{"type":"text","text":prompt},
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
]}
]
)
return resp.choices[0].message.content
# 🤖 9. AI Model Integration
def save_full_transcript(query, text):
"""Save full transcript of Arxiv results as a file."""
create_file(query, text, "md")
# ------------------------------
# NEW: Helper to parse references
# ------------------------------
def parse_arxiv_refs(ref_text: str):
"""
Parse the multi-line references returned by the RAG pipeline.
Typical format lines like:
1) [Paper Title 2023] This is the summary ...
2) [Another Title (2024)] Another summary text ...
We'll attempt to find a year with a small regex or fallback.
Return list of dicts: { 'title': str, 'summary': str, 'year': int or None }
"""
lines = ref_text.split('\n')
results = []
for line in lines:
line = line.strip()
if not line:
continue
# Attempt to find [Title ...]
title_match = re.search(r"\[([^\]]+)\]", line)
if title_match:
raw_title = title_match.group(1).strip()
else:
# If no bracket found, skip or treat entire line as summary
raw_title = "No Title"
# Attempt to find trailing summary after bracket
# Example line: " [Paper Title 2024] Paper summary blah blah"
# So remove the bracketed portion from the line
remainder = line.replace(title_match.group(0), "").strip() if title_match else line
summary = remainder
# Attempt to guess year from the raw title
# We look for 4-digit patterns in raw_title or summary
year_match = re.search(r'(20\d{2})', raw_title)
if not year_match:
# fallback: try summary
year_match = re.search(r'(20\d{2})', summary)
if year_match:
year = int(year_match.group(1))
else:
year = None
results.append({
'title': raw_title,
'summary': summary,
'year': year
})
return results
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=False):
"""Perform Arxiv search and generate audio summaries."""
start = time.time()
# 🎯 1) Query the HF RAG pipeline
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(q,20,"Semantic Search","mistralai/Mixtral-8x7B-Instruct-v0.1",api_name="/update_with_rag_md")[0]
r2 = client.predict(q,"mistralai/Mixtral-8x7B-Instruct-v0.1",True,api_name="/ask_llm")
# 🎯 2) Combine for final text output
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
st.markdown(result)
# 🎯 3) Generate "all at once" audio if requested
if full_audio:
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
audio_file_full = speak_with_edge_tts(complete_text)
st.write("### 📚 Full Audio")
play_and_download_audio(audio_file_full)
if vocal_summary:
main_text = clean_for_speech(r2)
audio_file_main = speak_with_edge_tts(main_text)
st.write("### 🎙 Short Audio")
play_and_download_audio(audio_file_main)
if extended_refs:
summaries_text = "Extended references: " + refs.replace('"','')
summaries_text = clean_for_speech(summaries_text)
audio_file_refs = speak_with_edge_tts(summaries_text)
st.write("### 📜 Long Refs")
play_and_download_audio(audio_file_refs)
# --------------------------------------
# NEW: Parse references, show sorted list
# --------------------------------------
parsed_refs = parse_arxiv_refs(refs)
# Sort by year descending (put None at bottom)
# If you want to skip older than 2022, you can filter them:
# parsed_refs = [r for r in parsed_refs if (r["year"] is not None and r["year"] >= 2022)]
parsed_refs.sort(key=lambda x: x["year"] if x["year"] else 0, reverse=True)
st.write("## Individual Papers (Most Recent First)")
for idx, paper in enumerate(parsed_refs):
year_str = paper["year"] if paper["year"] else "Unknown Year"
st.markdown(f"**{idx+1}. {paper['title']}** \n*Year:* {year_str}")
st.markdown(f"*Summary:* {paper['summary']}")
# Two new TTS buttons: Title only or Title+Summary
colA, colB = st.columns(2)
with colA:
if st.button(f"🔊 Title", key=f"title_{idx}"):
text_tts = clean_for_speech(paper['title'])
audio_file_title = speak_with_edge_tts(text_tts)
play_and_download_audio(audio_file_title)
with colB:
if st.button(f"🔊 Title+Summary", key=f"summary_{idx}"):
text_tts = clean_for_speech(paper['title'] + ". " + paper['summary'])
audio_file_title_summary = speak_with_edge_tts(text_tts)
play_and_download_audio(audio_file_title_summary)
st.write("---")
# Keep your original block for "Titles Only" if you want:
if titles_summary:
# This is your existing code block
titles = []
for line in refs.split('\n'):
m = re.search(r"\[([^\]]+)\]", line)
if m:
titles.append(m.group(1))
if titles:
titles_text = "Titles: " + ", ".join(titles)
titles_text = clean_for_speech(titles_text)
audio_file_titles = speak_with_edge_tts(titles_text)
st.write("### 🔖 Titles (All-In-One)")
play_and_download_audio(audio_file_titles)
elapsed = time.time()-start
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
# Always create a file with the result
create_file(q, result, "md")
return result
def process_with_gpt(text):
"""Process text with GPT-4"""
if not text:
return
st.session_state.messages.append({"role":"user","content":text})
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
c = openai_client.chat.completions.create(
model=st.session_state["openai_model"],
messages=st.session_state.messages,
stream=False
)
ans = c.choices[0].message.content
st.write("GPT-4o: " + ans)
create_file(text, ans, "md")
st.session_state.messages.append({"role":"assistant","content":ans})
return ans
def process_with_claude(text):
"""Process text with Claude"""
if not text:
return
with st.chat_message("user"):
st.markdown(text)
with st.chat_message("assistant"):
r = claude_client.messages.create(
model="claude-3-sonnet-20240229",
max_tokens=1000,
messages=[{"role":"user","content":text}]
)
ans = r.content[0].text
st.write("Claude-3.5: " + ans)
create_file(text, ans, "md")
st.session_state.chat_history.append({"user":text,"claude":ans})
return ans
# 📂 10. File Management
def create_zip_of_files(md_files, mp3_files):
"""Create zip with intelligent naming"""
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
if not all_files:
return None
# Collect content for high-info term extraction
all_content = []
for f in all_files:
if f.endswith('.md'):
with open(f, 'r', encoding='utf-8') as file:
all_content.append(file.read())
elif f.endswith('.mp3'):
all_content.append(os.path.basename(f))
combined_content = " ".join(all_content)
info_terms = get_high_info_terms(combined_content)
timestamp = datetime.now().strftime("%y%m_%H%M")
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:3])
zip_name = f"{timestamp}_{name_text}.zip"
with zipfile.ZipFile(zip_name,'w') as z:
for f in all_files:
z.write(f)
return zip_name
def load_files_for_sidebar():
"""Load and group files for sidebar display"""
md_files = glob.glob("*.md")
mp3_files = glob.glob("*.mp3")
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
all_files = md_files + mp3_files
groups = defaultdict(list)
for f in all_files:
fname = os.path.basename(f)
prefix = fname[:10]
groups[prefix].append(f)
for prefix in groups:
groups[prefix].sort(key=lambda x: os.path.getmtime(x), reverse=True)
sorted_prefixes = sorted(groups.keys(),
key=lambda pre: max(os.path.getmtime(x) for x in groups[pre]),
reverse=True)
return groups, sorted_prefixes
def extract_keywords_from_md(files):
"""Extract keywords from markdown files"""
text = ""
for f in files:
if f.endswith(".md"):
c = open(f,'r',encoding='utf-8').read()
text += " " + c
return get_high_info_terms(text)
def display_file_manager_sidebar(groups, sorted_prefixes):
"""Display file manager in sidebar"""
st.sidebar.title("🎵 Audio & Docs Manager")
all_md = []
all_mp3 = []
for prefix in groups:
for f in groups[prefix]:
if f.endswith(".md"):
all_md.append(f)
elif f.endswith(".mp3"):
all_mp3.append(f)
top_bar = st.sidebar.columns(3)
with top_bar[0]:
if st.button("🗑 DelAllMD"):
for f in all_md:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[1]:
if st.button("🗑 DelAllMP3"):
for f in all_mp3:
os.remove(f)
st.session_state.should_rerun = True
with top_bar[2]:
if st.button("⬇️ ZipAll"):
z = create_zip_of_files(all_md, all_mp3)
if z:
st.sidebar.markdown(get_download_link(z),unsafe_allow_html=True)
for prefix in sorted_prefixes:
files = groups[prefix]
kw = extract_keywords_from_md(files)
keywords_str = " ".join(kw) if kw else "No Keywords"
with st.sidebar.expander(f"{prefix} Files ({len(files)}) - KW: {keywords_str}", expanded=True):
c1,c2 = st.columns(2)
with c1:
if st.button("👀ViewGrp", key="view_group_"+prefix):
st.session_state.viewing_prefix = prefix
with c2:
if st.button("🗑DelGrp", key="del_group_"+prefix):
for f in files:
os.remove(f)
st.success(f"Deleted group {prefix}!")
st.session_state.should_rerun = True
for f in files:
fname = os.path.basename(f)
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
st.write(f"**{fname}** - {ctime}")
# 🎯 11. Main Application
def main():
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True)
mycomponent = components.declare_component("mycomponent", path="mycomponent")
val = mycomponent(my_input_value="Hello")
# Show input in a text box for editing if detected
if val:
val_stripped = val.replace('\n', ' ')
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
edited_input = edited_input.replace('\n', ' ')
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
col1, col2 = st.columns(2)
with col1:
autorun = st.checkbox("⚙ AutoRun", value=True)
with col2:
full_audio = st.checkbox("📚FullAudio", value=False,
help="Generate full audio response")
input_changed = (val != st.session_state.old_val)
if autorun and input_changed:
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
else:
if st.button("▶ Run"):
st.session_state.old_val = val
if run_option == "Arxiv":
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
titles_summary=True, full_audio=full_audio)
else:
if run_option == "GPT-4o":
process_with_gpt(edited_input)
elif run_option == "Claude-3.5":
process_with_claude(edited_input)
if tab_main == "🔍 ArXiv":
st.subheader("🔍 Query ArXiv")
q = st.text_input("🔍 Query:")
st.markdown("### 🎛 Options")
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
extended_refs = st.checkbox("📜LongRefs", value=False)
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
full_audio = st.checkbox("📚FullAudio", value=False,
help="Full audio of results")
full_transcript = st.checkbox("🧾FullTranscript", value=False,
help="Generate a full transcript file")
if q and st.button("🔍Run"):
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
if full_transcript:
save_full_transcript(q, result)
st.markdown("### Change Prompt & Re-Run")
q_new = st.text_input("🔄 Modify Query:")
if q_new and st.button("🔄 Re-Run with Modified Query"):
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
titles_summary=titles_summary, full_audio=full_audio)
if full_transcript:
save_full_transcript(q_new, result)
elif tab_main == "🎤 Voice":
st.subheader("🎤 Voice Input")
user_text = st.text_area("💬 Message:", height=100)
user_text = user_text.strip().replace('\n', ' ')
if st.button("📨 Send"):
process_with_gpt(user_text)
st.subheader("📜 Chat History")
t1,t2=st.tabs(["Claude History","GPT-4o History"])
with t1:
for c in st.session_state.chat_history:
st.write("**You:**", c["user"])
st.write("**Claude:**", c["claude"])
with t2:
for m in st.session_state.messages:
with st.chat_message(m["role"]):
st.markdown(m["content"])
elif tab_main == "📸 Media":
st.header("📸 Images & 🎥 Videos")
tabs = st.tabs(["🖼 Images", "🎥 Video"])
with tabs[0]:
imgs = glob.glob("*.png")+glob.glob("*.jpg")
if imgs:
c = st.slider("Cols",1,5,3)
cols = st.columns(c)
for i,f in enumerate(imgs):
with cols[i%c]:
st.image(Image.open(f),use_container_width=True)
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
a = process_image(f,"Describe this image.")
st.markdown(a)
else:
st.write("No images found.")
with tabs[1]:
vids = glob.glob("*.mp4")
if vids:
for v in vids:
with st.expander(f"🎥 {os.path.basename(v)}"):
st.video(v)
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
a = process_video_with_gpt(v,"Describe video.")
st.markdown(a)
else:
st.write("No videos found.")
elif tab_main == "📝 Editor":
if getattr(st.session_state,'current_file',None):
st.subheader(f"Editing: {st.session_state.current_file}")
new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
if st.button("💾 Save"):
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
f.write(new_text)
st.success("Updated!")
st.session_state.should_rerun = True
else:
st.write("Select a file from the sidebar to edit.")
groups, sorted_prefixes = load_files_for_sidebar()
display_file_manager_sidebar(groups, sorted_prefixes)
if st.session_state.viewing_prefix and st.session_state.viewing_prefix in groups:
st.write("---")
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
for f in groups[st.session_state.viewing_prefix]:
fname = os.path.basename(f)
ext = os.path.splitext(fname)[1].lower().strip('.')
st.write(f"### {fname}")
if ext == "md":
content = open(f,'r',encoding='utf-8').read()
st.markdown(content)
elif ext == "mp3":
st.audio(f)
else:
st.markdown(get_download_link(f), unsafe_allow_html=True)
if st.button("❌ Close"):
st.session_state.viewing_prefix = None
if st.session_state.should_rerun:
st.session_state.should_rerun = False
st.rerun()
if __name__=="__main__":
main()