Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import streamlit as st | |
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile | |
import plotly.graph_objects as go | |
import streamlit.components.v1 as components | |
from datetime import datetime | |
from audio_recorder_streamlit import audio_recorder | |
from bs4 import BeautifulSoup | |
from collections import defaultdict, deque, Counter | |
from dotenv import load_dotenv | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
from io import BytesIO | |
from PIL import Image | |
from PyPDF2 import PdfReader | |
from urllib.parse import quote | |
from xml.etree import ElementTree as ET | |
from openai import OpenAI | |
import extra_streamlit_components as stx | |
from streamlit.runtime.scriptrunner import get_script_run_ctx | |
import asyncio | |
import edge_tts | |
from streamlit_marquee import streamlit_marquee | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 1. CORE CONFIGURATION & SETUP | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
st.set_page_config( | |
page_title="π²TalkingAIResearcherπ", | |
page_icon="π²π", | |
layout="wide", | |
initial_sidebar_state="auto", | |
menu_items={ | |
'Get Help': 'https://huggingface.co/awacke1', | |
'Report a bug': 'https://huggingface.co/spaces/awacke1', | |
'About': "π²TalkingAIResearcherπ" | |
} | |
) | |
load_dotenv() | |
# Available English voices for Edge TTS | |
EDGE_TTS_VOICES = [ | |
"en-US-AriaNeural", | |
"en-US-GuyNeural", | |
"en-US-JennyNeural", | |
"en-GB-SoniaNeural", | |
"en-GB-RyanNeural", | |
"en-AU-NatashaNeural", | |
"en-AU-WilliamNeural", | |
"en-CA-ClaraNeural", | |
"en-CA-LiamNeural" | |
] | |
# Session state variables | |
if 'marquee_settings' not in st.session_state: | |
st.session_state['marquee_settings'] = { | |
"background": "#1E1E1E", | |
"color": "#FFFFFF", | |
"font-size": "14px", | |
"animationDuration": "20s", | |
"width": "100%", | |
"lineHeight": "35px" | |
} | |
if 'tts_voice' not in st.session_state: | |
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] | |
if 'audio_format' not in st.session_state: | |
st.session_state['audio_format'] = 'mp3' | |
if 'transcript_history' not in st.session_state: | |
st.session_state['transcript_history'] = [] | |
if 'chat_history' not in st.session_state: | |
st.session_state['chat_history'] = [] | |
if 'openai_model' not in st.session_state: | |
st.session_state['openai_model'] = "gpt-4o-2024-05-13" | |
if 'messages' not in st.session_state: | |
st.session_state['messages'] = [] | |
if 'last_voice_input' not in st.session_state: | |
st.session_state['last_voice_input'] = "" | |
if 'editing_file' not in st.session_state: | |
st.session_state['editing_file'] = None | |
if 'edit_new_name' not in st.session_state: | |
st.session_state['edit_new_name'] = "" | |
if 'edit_new_content' not in st.session_state: | |
st.session_state['edit_new_content'] = "" | |
if 'viewing_prefix' not in st.session_state: | |
st.session_state['viewing_prefix'] = None | |
if 'should_rerun' not in st.session_state: | |
st.session_state['should_rerun'] = False | |
if 'old_val' not in st.session_state: | |
st.session_state['old_val'] = None | |
if 'last_query' not in st.session_state: | |
st.session_state['last_query'] = "" | |
if 'marquee_content' not in st.session_state: | |
st.session_state['marquee_content'] = "π Welcome to TalkingAIResearcher | π€ Your Research Assistant" | |
# API Keys | |
openai_api_key = os.getenv('OPENAI_API_KEY', "") | |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "") | |
xai_key = os.getenv('xai',"") | |
if 'OPENAI_API_KEY' in st.secrets: | |
openai_api_key = st.secrets['OPENAI_API_KEY'] | |
if 'ANTHROPIC_API_KEY' in st.secrets: | |
anthropic_key = st.secrets["ANTHROPIC_API_KEY"] | |
openai.api_key = openai_api_key | |
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID')) | |
HF_KEY = os.getenv('HF_KEY') | |
API_URL = os.getenv('API_URL') | |
# Helper constants | |
FILE_EMOJIS = { | |
"md": "π", | |
"mp3": "π΅", | |
"wav": "π" | |
} | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 2. HELPER FUNCTIONS | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def get_central_time(): | |
"""Get current time in US Central timezone.""" | |
central = pytz.timezone('US/Central') | |
return datetime.now(central) | |
def format_timestamp_prefix(): | |
"""Generate timestamp prefix in format MM_dd_yy_hh_mm_AM/PM.""" | |
ct = get_central_time() | |
return ct.strftime("%m_%d_%y_%I_%M_%p") | |
def initialize_marquee_settings(): | |
if 'marquee_settings' not in st.session_state: | |
st.session_state['marquee_settings'] = { | |
"background": "#1E1E1E", | |
"color": "#FFFFFF", | |
"font-size": "14px", | |
"animationDuration": "20s", | |
"width": "100%", | |
"lineHeight": "35px" | |
} | |
def get_marquee_settings(): | |
initialize_marquee_settings() | |
return st.session_state['marquee_settings'] | |
def update_marquee_settings_ui(): | |
"""Add color pickers & sliders for marquee config in sidebar.""" | |
st.sidebar.markdown("### π― Marquee Settings") | |
cols = st.sidebar.columns(2) | |
with cols[0]: | |
bg_color = st.color_picker("π¨ Background", | |
st.session_state['marquee_settings']["background"], | |
key="bg_color_picker") | |
text_color = st.color_picker("βοΈ Text", | |
st.session_state['marquee_settings']["color"], | |
key="text_color_picker") | |
with cols[1]: | |
font_size = st.slider("π Size", 10, 24, 14, key="font_size_slider") | |
duration = st.slider("β±οΈ Speed", 1, 20, 20, key="duration_slider") | |
st.session_state['marquee_settings'].update({ | |
"background": bg_color, | |
"color": text_color, | |
"font-size": f"{font_size}px", | |
"animationDuration": f"{duration}s" | |
}) | |
def display_marquee(text, settings, key_suffix=""): | |
"""Show marquee text with style from settings.""" | |
truncated_text = text[:280] + "..." if len(text) > 280 else text | |
streamlit_marquee( | |
content=truncated_text, | |
**settings, | |
key=f"marquee_{key_suffix}" | |
) | |
st.write("") | |
def get_high_info_terms(text: str, top_n=10) -> list: | |
"""Extract top_n freq words or bigrams (excluding stopwords).""" | |
stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with']) | |
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower()) | |
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])] | |
combined = words + bi_grams | |
filtered = [term for term in combined if term not in stop_words and len(term.split()) <= 2] | |
counter = Counter(filtered) | |
return [term for term, freq in counter.most_common(top_n)] | |
def clean_text_for_filename(text: str) -> str: | |
"""Remove special chars, short words, etc. for filenames.""" | |
text = text.lower() | |
text = re.sub(r'[^\w\s-]', '', text) | |
words = text.split() | |
# remove short or unhelpful words | |
stop_short = set(['the', 'and', 'for', 'with', 'this', 'that', 'ai', 'library']) | |
filtered = [w for w in words if len(w) > 3 and w not in stop_short] | |
return '_'.join(filtered)[:200] | |
def generate_filename(prompt, response, file_type="md", max_length=200): | |
""" | |
Generate a shortened filename by: | |
1) extracting high-info terms, | |
2) snippet from prompt+response, | |
3) remove duplicates, | |
4) truncate if needed. | |
""" | |
prefix = format_timestamp_prefix() + "_" | |
combined_text = (prompt + " " + response)[:200] | |
info_terms = get_high_info_terms(combined_text, top_n=5) | |
snippet = (prompt[:40] + " " + response[:40]).strip() | |
snippet_cleaned = clean_text_for_filename(snippet) | |
# remove duplicates | |
name_parts = info_terms + [snippet_cleaned] | |
seen = set() | |
unique_parts = [] | |
for part in name_parts: | |
if part not in seen: | |
seen.add(part) | |
unique_parts.append(part) | |
full_name = '_'.join(unique_parts).strip('_') | |
leftover_chars = max_length - len(prefix) - len(file_type) - 1 | |
if len(full_name) > leftover_chars: | |
full_name = full_name[:leftover_chars] | |
return f"{prefix}{full_name}.{file_type}" | |
def create_file(prompt, response, file_type="md"): | |
"""Create a text file from prompt + response with sanitized filename.""" | |
filename = generate_filename(prompt.strip(), response.strip(), file_type) | |
with open(filename, 'w', encoding='utf-8') as f: | |
f.write(prompt + "\n\n" + response) | |
return filename | |
def get_download_link(file, file_type="zip"): | |
""" | |
Convert a file to base64 and return an HTML link for download. | |
""" | |
with open(file, "rb") as f: | |
b64 = base64.b64encode(f.read()).decode() | |
if file_type == "zip": | |
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
elif file_type == "mp3": | |
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">π΅ Download {os.path.basename(file)}</a>' | |
elif file_type == "wav": | |
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
elif file_type == "md": | |
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">π Download {os.path.basename(file)}</a>' | |
else: | |
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>' | |
def clean_for_speech(text: str) -> str: | |
"""Clean up text for TTS output.""" | |
text = text.replace("\n", " ") | |
text = text.replace("</s>", " ") | |
text = text.replace("#", "") | |
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text) | |
text = re.sub(r"\s+", " ", text).strip() | |
return text | |
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
"""Async TTS generation with edge-tts library.""" | |
text = clean_for_speech(text) | |
if not text.strip(): | |
return None | |
rate_str = f"{rate:+d}%" | |
pitch_str = f"{pitch:+d}Hz" | |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str) | |
out_fn = generate_filename(text, text, file_type=file_format) | |
await communicate.save(out_fn) | |
return out_fn | |
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"): | |
"""Wrapper for the async TTS generate call.""" | |
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format)) | |
def play_and_download_audio(file_path, file_type="mp3"): | |
"""Streamlit audio + a quick download link.""" | |
if file_path and os.path.exists(file_path): | |
st.audio(file_path) | |
dl_link = get_download_link(file_path, file_type=file_type) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
def save_qa_with_audio(question, answer, voice=None): | |
"""Save Q&A to markdown and also generate audio.""" | |
if not voice: | |
voice = st.session_state['tts_voice'] | |
combined_text = f"# Question\n{question}\n\n# Answer\n{answer}" | |
md_file = create_file(question, answer, "md") | |
audio_text = f"{question}\n\nAnswer: {answer}" | |
audio_file = speak_with_edge_tts( | |
audio_text, | |
voice=voice, | |
file_format=st.session_state['audio_format'] | |
) | |
return md_file, audio_file | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 3. PAPER PARSING & DISPLAY | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def parse_arxiv_refs(ref_text: str): | |
""" | |
Given a multi-line markdown with arxiv references, parse them into | |
a list of dicts: {date, title, url, authors, summary, ...}. | |
""" | |
if not ref_text: | |
return [] | |
results = [] | |
current_paper = {} | |
lines = ref_text.split('\n') | |
for i, line in enumerate(lines): | |
if line.count('|') == 2: | |
# Found a new paper line | |
if current_paper: | |
results.append(current_paper) | |
if len(results) >= 20: | |
break | |
try: | |
header_parts = line.strip('* ').split('|') | |
date = header_parts[0].strip() | |
title = header_parts[1].strip() | |
url_match = re.search(r'(https://arxiv.org/\S+)', line) | |
url = url_match.group(1) if url_match else f"paper_{len(results)}" | |
current_paper = { | |
'date': date, | |
'title': title, | |
'url': url, | |
'authors': '', | |
'summary': '', | |
'full_audio': None, | |
'download_base64': '', | |
} | |
except Exception as e: | |
st.warning(f"Error parsing paper header: {str(e)}") | |
current_paper = {} | |
continue | |
elif current_paper: | |
# If authors not set, fill it; otherwise, fill summary | |
if not current_paper['authors']: | |
current_paper['authors'] = line.strip('* ') | |
else: | |
if current_paper['summary']: | |
current_paper['summary'] += ' ' + line.strip() | |
else: | |
current_paper['summary'] = line.strip() | |
if current_paper: | |
results.append(current_paper) | |
return results[:20] | |
def create_paper_links_md(papers): | |
"""Creates a minimal .md content linking to each paper's arxiv URL.""" | |
lines = ["# Paper Links\n"] | |
for i, p in enumerate(papers, start=1): | |
lines.append(f"{i}. **{p['title']}** β [Arxiv]({p['url']})") | |
return "\n".join(lines) | |
def create_paper_audio_files(papers, input_question): | |
""" | |
For each paper, generate TTS audio summary, store the path in `paper['full_audio']`, | |
and also store a base64 link for stable downloading. | |
""" | |
for paper in papers: | |
try: | |
audio_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}" | |
audio_text = clean_for_speech(audio_text) | |
file_format = st.session_state['audio_format'] | |
audio_file = speak_with_edge_tts( | |
audio_text, | |
voice=st.session_state['tts_voice'], | |
file_format=file_format | |
) | |
paper['full_audio'] = audio_file | |
if audio_file: | |
with open(audio_file, "rb") as af: | |
b64_data = base64.b64encode(af.read()).decode() | |
download_filename = os.path.basename(audio_file) | |
mime_type = "mpeg" if file_format == "mp3" else "wav" | |
paper['download_base64'] = ( | |
f'<a href="data:audio/{mime_type};base64,{b64_data}" ' | |
f'download="{download_filename}">π΅ Download {download_filename}</a>' | |
) | |
except Exception as e: | |
st.warning(f"Error processing paper {paper['title']}: {str(e)}") | |
paper['full_audio'] = None | |
paper['download_base64'] = '' | |
def display_file_history_in_sidebar(): | |
""" | |
Shows a history of files grouped by query, with lazy loading of audio and content. | |
""" | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("### π File History") | |
# Gather all files | |
md_files = glob.glob("*.md") | |
mp3_files = glob.glob("*.mp3") | |
wav_files = glob.glob("*.wav") | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
st.sidebar.write("No files found.") | |
return | |
# Group files by their query prefix (timestamp_query) | |
grouped_files = {} | |
for f in all_files: | |
fname = os.path.basename(f) | |
prefix = '_'.join(fname.split('_')[:6]) # Get timestamp part | |
if prefix not in grouped_files: | |
grouped_files[prefix] = {'md': [], 'audio': [], 'loaded': False} | |
ext = os.path.splitext(fname)[1].lower() | |
if ext == '.md': | |
grouped_files[prefix]['md'].append(f) | |
elif ext in ['.mp3', '.wav']: | |
grouped_files[prefix]['audio'].append(f) | |
# Sort groups by timestamp (newest first) | |
sorted_groups = sorted(grouped_files.items(), key=lambda x: x[0], reverse=True) | |
# πβ¬οΈ Sidebar delete all and zip all download | |
col1, col4 = st.sidebar.columns(2) | |
with col1: | |
if st.button("π Delete All"): | |
for f in all_files: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with col4: | |
if st.button("β¬οΈ Zip All"): | |
zip_name = create_zip_of_files(md_files, mp3_files, wav_files, | |
st.session_state.get('last_query', '')) | |
if zip_name: | |
st.sidebar.markdown(get_download_link(zip_name, "zip"), | |
unsafe_allow_html=True) | |
# Display grouped files | |
for prefix, files in sorted_groups: | |
# Get a preview of content from first MD file | |
preview = "" | |
if files['md']: | |
with open(files['md'][0], "r", encoding="utf-8") as f: | |
preview = f.read(200).replace("\n", " ") | |
if len(preview) > 200: | |
preview += "..." | |
# Create unique key for this group | |
group_key = f"group_{prefix}" | |
if group_key not in st.session_state: | |
st.session_state[group_key] = False | |
# Display group expander | |
with st.sidebar.expander(f"π Query Group: {prefix}"): | |
st.write("**Preview:**") | |
st.write(preview) | |
# Load full content button | |
if st.button("π View Full Content", key=f"btn_{prefix}"): | |
st.session_state[group_key] = True | |
# Only show full content and audio if button was clicked | |
if st.session_state[group_key]: | |
# Display markdown files | |
for md_file in files['md']: | |
with open(md_file, "r", encoding="utf-8") as f: | |
content = f.read() | |
st.markdown("**Full Content:**") | |
st.markdown(content) | |
st.markdown(get_download_link(md_file, file_type="md"), | |
unsafe_allow_html=True) | |
# Display audio files | |
usePlaySidebar=False | |
if usePlaySidebar: | |
for audio_file in files['audio']: | |
ext = os.path.splitext(audio_file)[1].replace('.', '') | |
st.audio(audio_file) | |
st.markdown(get_download_link(audio_file, file_type=ext), | |
unsafe_allow_html=True) | |
def display_papers(papers, marquee_settings): | |
"""Display paper info with both abs and PDF links.""" | |
st.write("## Research Papers") | |
for i, paper in enumerate(papers, start=1): | |
marquee_text = f"π {paper['title']} | π€ {paper['authors'][:120]}" | |
display_marquee(marquee_text, marquee_settings, key_suffix=f"paper_{i}") | |
with st.expander(f"{i}. π {paper['title']}", expanded=True): | |
# Create PDF link by replacing 'abs' with 'pdf' in arxiv URL | |
pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
st.markdown(f""" | |
**{paper['date']} | {paper['title']}** | |
π [Abstract]({paper['url']}) | π [PDF]({pdf_url}) | |
""") | |
st.markdown(f"*Authors:* {paper['authors']}") | |
st.markdown(paper['summary']) | |
if paper.get('full_audio'): | |
st.write("π Paper Audio") | |
st.audio(paper['full_audio']) | |
if paper['download_base64']: | |
st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
def display_papers_in_sidebar(papers): | |
"""Mirrors the paper listing in sidebar with lazy loading.""" | |
st.sidebar.title("πΆ Papers & Audio") | |
for i, paper in enumerate(papers, start=1): | |
paper_key = f"paper_{paper['url']}" | |
if paper_key not in st.session_state: | |
st.session_state[paper_key] = False | |
with st.sidebar.expander(f"{i}. {paper['title']}"): | |
# Create PDF link | |
pdf_url = paper['url'].replace('/abs/', '/pdf/') | |
st.markdown(f"π [Abstract]({paper['url']}) | π [PDF]({pdf_url})") | |
# Preview of authors and summary | |
st.markdown(f"**Authors:** {paper['authors'][:100]}...") | |
if paper['summary']: | |
st.markdown(f"**Summary:** {paper['summary'][:200]}...") | |
# Load audio button | |
if paper['full_audio'] and st.button("π΅ Load Audio", | |
key=f"btn_{paper_key}"): | |
st.session_state[paper_key] = True | |
# Show audio player and download only if requested | |
if st.session_state[paper_key] and paper['full_audio']: | |
st.audio(paper['full_audio']) | |
if paper['download_base64']: | |
st.markdown(paper['download_base64'], unsafe_allow_html=True) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 4. ZIP FUNCTION | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def create_zip_of_files(md_files, mp3_files, wav_files, input_question): | |
""" | |
Zip up all relevant files, limiting the final zip name to ~20 chars | |
to avoid overly long base64 strings. | |
""" | |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md'] | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
return None | |
all_content = [] | |
for f in all_files: | |
if f.endswith('.md'): | |
with open(f, 'r', encoding='utf-8') as file: | |
all_content.append(file.read()) | |
elif f.endswith('.mp3') or f.endswith('.wav'): | |
basename = os.path.splitext(os.path.basename(f))[0] | |
words = basename.replace('_', ' ') | |
all_content.append(words) | |
all_content.append(input_question) | |
combined_content = " ".join(all_content) | |
info_terms = get_high_info_terms(combined_content, top_n=10) | |
timestamp = format_timestamp_prefix() | |
name_text = '-'.join(term for term in info_terms[:5]) | |
short_zip_name = (timestamp + "_" + name_text)[:20] + ".zip" | |
with zipfile.ZipFile(short_zip_name, 'w') as z: | |
for f in all_files: | |
z.write(f) | |
return short_zip_name | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 5. MAIN LOGIC: AI LOOKUP & VOICE INPUT | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False, | |
titles_summary=True, full_audio=False): | |
"""Main routine that uses Anthropic (Claude) + Gradio ArXiv RAG pipeline.""" | |
start = time.time() | |
ai_constitution = """ | |
You are a talented AI coder and songwriter... | |
""" | |
# --- 1) Claude API | |
client = anthropic.Anthropic(api_key=anthropic_key) | |
user_input = q | |
response = client.messages.create( | |
model="claude-3-sonnet-20240229", | |
max_tokens=1000, | |
messages=[ | |
{"role": "user", "content": user_input} | |
]) | |
st.write("Claude's reply π§ :") | |
st.markdown(response.content[0].text) | |
# Save & produce audio | |
result = response.content[0].text | |
create_file(q, result) | |
md_file, audio_file = save_qa_with_audio(q, result) | |
st.subheader("π Main Response Audio") | |
play_and_download_audio(audio_file, st.session_state['audio_format']) | |
# --- 2) Arxiv RAG | |
#st.write("Arxiv's AI this Evening is Mixtral 8x7B...") | |
st.write('Running Arxiv RAG with Claude inputs.') | |
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern") | |
refs = client.predict( | |
q, | |
10, | |
"Semantic Search", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1", | |
api_name="/update_with_rag_md" | |
)[0] | |
#r2 = client.predict( | |
# q, | |
# "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
# True, | |
# api_name="/ask_llm" | |
#) | |
# --- 3) Claude API with arxiv list of papers to app.py | |
client = anthropic.Anthropic(api_key=anthropic_key) | |
user_input = q + '\n\n' + 'Use the paper list below to answer the question thinking through step by step how to create a streamlit app.py and requirements.txt for the solution that answers the questions with a working app to demonstrate.'+ '\n\n' | |
response = client.messages.create( | |
model="claude-3-sonnet-20240229", | |
max_tokens=1000, | |
messages=[ | |
{"role": "user", "content": user_input} | |
]) | |
r2 = response.content[0].text | |
st.write("Claude's reply π§ :") | |
st.markdown(r2) | |
#result = f"### π {q}\n\n{r2}\n\n{refs}" | |
result = f"π {r2}\n\n{refs}" | |
md_file, audio_file = save_qa_with_audio(q, result) | |
st.subheader("π Main Response Audio") | |
play_and_download_audio(audio_file, st.session_state['audio_format']) | |
# --- 3) Parse + handle papers | |
papers = parse_arxiv_refs(refs) | |
if papers: | |
# Create minimal links page first | |
paper_links = create_paper_links_md(papers) | |
links_file = create_file(q, paper_links, "md") | |
st.markdown(paper_links) | |
# Then create audio for each paper | |
create_paper_audio_files(papers, input_question=q) | |
display_papers(papers, get_marquee_settings()) | |
display_papers_in_sidebar(papers) | |
else: | |
st.warning("No papers found in the response.") | |
elapsed = time.time() - start | |
st.write(f"**Total Elapsed:** {elapsed:.2f} s") | |
return result | |
def process_voice_input(text): | |
"""When user sends voice query, we run the AI lookup + Q&A with audio.""" | |
if not text: | |
return | |
st.subheader("π Search Results") | |
result = perform_ai_lookup( | |
text, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=True | |
) | |
md_file, audio_file = save_qa_with_audio(text, result) | |
st.subheader("π Generated Files") | |
st.write(f"Markdown: {md_file}") | |
st.write(f"Audio: {audio_file}") | |
play_and_download_audio(audio_file, st.session_state['audio_format']) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 6. FILE HISTORY SIDEBAR | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def display_file_history_in_sidebar(): | |
""" | |
Shows a history of each local .md, .mp3, .wav file in descending | |
order of modification time, with quick icons and optional download links. | |
""" | |
st.sidebar.markdown("---") | |
st.sidebar.markdown("### π File History") | |
# Gather all files | |
md_files = glob.glob("*.md") | |
mp3_files = glob.glob("*.mp3") | |
wav_files = glob.glob("*.wav") | |
all_files = md_files + mp3_files + wav_files | |
if not all_files: | |
st.sidebar.write("No files found.") | |
return | |
# πβ¬οΈ Sidebar delete all and zip all download | |
col1, col4 = st.sidebar.columns(2) | |
with col1: | |
if st.button("π Delete All"): | |
for f in all_md: | |
os.remove(f) | |
for f in all_mp3: | |
os.remove(f) | |
for f in all_wav: | |
os.remove(f) | |
st.session_state.should_rerun = True | |
with col4: | |
if st.button("β¬οΈ Zip All"): | |
zip_name = create_zip_of_files(md_files, mp3_files, wav_files, st.session_state.get('last_query', '')) | |
if zip_name: | |
st.sidebar.markdown(get_download_link(zip_name, "zip"), unsafe_allow_html=True) | |
# Sort newest first | |
all_files = sorted(all_files, key=os.path.getmtime, reverse=True) | |
for f in all_files: | |
fname = os.path.basename(f) | |
ext = os.path.splitext(fname)[1].lower().strip('.') | |
emoji = FILE_EMOJIS.get(ext, 'π¦') | |
time_str = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S") | |
with st.sidebar.expander(f"{emoji} {fname}"): | |
st.write(f"**Modified:** {time_str}") | |
if ext == "md": | |
with open(f, "r", encoding="utf-8") as file_in: | |
snippet = file_in.read(200).replace("\n", " ") | |
if len(snippet) == 200: | |
snippet += "..." | |
st.write(snippet) | |
st.markdown(get_download_link(f, file_type="md"), unsafe_allow_html=True) | |
elif ext in ["mp3","wav"]: | |
st.audio(f) | |
st.markdown(get_download_link(f, file_type=ext), unsafe_allow_html=True) | |
else: | |
st.markdown(get_download_link(f), unsafe_allow_html=True) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# 7. MAIN APP | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
def main(): | |
# 1) Setup marquee UI in the sidebar | |
update_marquee_settings_ui() | |
marquee_settings = get_marquee_settings() | |
# 2) Display the marquee welcome | |
display_marquee(st.session_state['marquee_content'], | |
{**marquee_settings, "font-size": "28px", "lineHeight": "50px"}, | |
key_suffix="welcome") | |
# 3) Main action tabs | |
tab_main = st.radio("Action:", ["π€ Voice", "πΈ Media", "π ArXiv", "π Editor"], | |
horizontal=True) | |
# Example custom component usage | |
mycomponent = components.declare_component("mycomponent", path="mycomponent") | |
val = mycomponent(my_input_value="Hello") | |
if val: | |
val_stripped = val.replace('\\n', ' ') | |
edited_input = st.text_area("βοΈ Edit Input:", value=val_stripped, height=100) | |
run_option = st.selectbox("Model:", ["Arxiv"]) | |
col1, col2 = st.columns(2) | |
with col1: | |
autorun = st.checkbox("β AutoRun", value=True) | |
with col2: | |
full_audio = st.checkbox("πFullAudio", value=False) | |
input_changed = (val != st.session_state.old_val) | |
if autorun and input_changed: | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input | |
perform_ai_lookup(edited_input, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=full_audio) | |
else: | |
if st.button("βΆ Run"): | |
st.session_state.old_val = val | |
st.session_state.last_query = edited_input | |
perform_ai_lookup(edited_input, | |
vocal_summary=True, | |
extended_refs=False, | |
titles_summary=True, | |
full_audio=full_audio) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# TAB: ArXiv | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
if tab_main == "π ArXiv": | |
st.subheader("π Query ArXiv") | |
q = st.text_input("π Query:", key="arxiv_query") | |
st.markdown("### π Options") | |
vocal_summary = st.checkbox("πShortAudio", value=True, key="option_vocal_summary") | |
extended_refs = st.checkbox("πLongRefs", value=False, key="option_extended_refs") | |
titles_summary = st.checkbox("πTitlesOnly", value=True, key="option_titles_summary") | |
full_audio = st.checkbox("πFullAudio", value=False, key="option_full_audio") | |
full_transcript = st.checkbox("π§ΎFullTranscript", value=False, key="option_full_transcript") | |
if q and st.button("πRun"): | |
st.session_state.last_query = q | |
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs, | |
titles_summary=titles_summary, full_audio=full_audio) | |
if full_transcript: | |
create_file(q, result, "md") | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# TAB: Voice | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
elif tab_main == "π€ Voice": | |
st.subheader("π€ Voice Input") | |
st.markdown("### π€ Voice Settings") | |
selected_voice = st.selectbox( | |
"Select TTS Voice:", | |
options=EDGE_TTS_VOICES, | |
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice']) | |
) | |
st.markdown("### π Audio Format") | |
selected_format = st.radio( | |
"Choose Audio Format:", | |
options=["MP3", "WAV"], | |
index=0 | |
) | |
# Update session state if voice/format changes | |
if selected_voice != st.session_state['tts_voice']: | |
st.session_state['tts_voice'] = selected_voice | |
st.rerun() | |
if selected_format.lower() != st.session_state['audio_format']: | |
st.session_state['audio_format'] = selected_format.lower() | |
st.rerun() | |
# Input text | |
user_text = st.text_area("π¬ Message:", height=100) | |
user_text = user_text.strip().replace('\n', ' ') | |
if st.button("π¨ Send"): | |
process_voice_input(user_text) | |
st.subheader("π Chat History") | |
for c in st.session_state.chat_history: | |
st.write("**You:**", c["user"]) | |
st.write("**Response:**", c["claude"]) | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# TAB: Media | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
elif tab_main == "πΈ Media": | |
st.header("πΈ Media Gallery") | |
# By default, show audio first | |
tabs = st.tabs(["π΅ Audio", "πΌ Images", "π₯ Video"]) | |
# AUDIO sub-tab | |
with tabs[0]: | |
st.subheader("π΅ Audio Files") | |
audio_files = glob.glob("*.mp3") + glob.glob("*.wav") | |
if audio_files: | |
for a in audio_files: | |
with st.expander(os.path.basename(a)): | |
st.audio(a) | |
ext = os.path.splitext(a)[1].replace('.', '') | |
dl_link = get_download_link(a, file_type=ext) | |
st.markdown(dl_link, unsafe_allow_html=True) | |
else: | |
st.write("No audio files found.") | |
# IMAGES sub-tab | |
with tabs[1]: | |
st.subheader("πΌ Image Files") | |
imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg") | |
if imgs: | |
c = st.slider("Cols", 1, 5, 3, key="cols_images") | |
cols = st.columns(c) | |
for i, f in enumerate(imgs): | |
with cols[i % c]: | |
st.image(Image.open(f), use_container_width=True) | |
else: | |
st.write("No images found.") | |
# VIDEO sub-tab | |
with tabs[2]: | |
st.subheader("π₯ Video Files") | |
vids = glob.glob("*.mp4") + glob.glob("*.mov") + glob.glob("*.avi") | |
if vids: | |
for v in vids: | |
with st.expander(os.path.basename(v)): | |
st.video(v) | |
else: | |
st.write("No videos found.") | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# TAB: Editor | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
elif tab_main == "π Editor": | |
st.write("Select or create a file to edit. (Currently minimal demo)") | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
# SIDEBAR: FILE HISTORY | |
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | |
display_file_history_in_sidebar() | |
# Some light CSS styling | |
st.markdown(""" | |
<style> | |
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; } | |
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; } | |
.stButton>button { margin-right: 0.5rem; } | |
</style> | |
""", unsafe_allow_html=True) | |
# Rerun if needed | |
if st.session_state.should_rerun: | |
st.session_state.should_rerun = False | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |