DeepResearchEvaluator / backup5.kindabroken.app.py
awacke1's picture
Rename app.py to backup5.kindabroken.app.py
faee485 verified
import streamlit as st
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, time, zipfile
import plotly.graph_objects as go
import streamlit.components.v1 as components
from datetime import datetime
from audio_recorder_streamlit import audio_recorder
from bs4 import BeautifulSoup
from collections import defaultdict, deque
from dotenv import load_dotenv
from gradio_client import Client
from huggingface_hub import InferenceClient
from io import BytesIO
from PIL import Image
from PyPDF2 import PdfReader
from urllib.parse import quote
from xml.etree import ElementTree as ET
from openai import OpenAI
import extra_streamlit_components as stx
import asyncio
import edge_tts
# 1. App Configuration
Site_Name = '🔬 Research Assistant Pro'
st.set_page_config(
page_title=Site_Name,
page_icon="🔬",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'Get Help': 'https://huggingface.co/awacke1',
'Report a bug': 'https://huggingface.co/spaces/awacke1',
'About': Site_Name
}
)
load_dotenv()
# 2. API and Client Setup
openai_api_key = os.getenv('OPENAI_API_KEY', st.secrets.get('OPENAI_API_KEY', ''))
anthropic_key = os.getenv('ANTHROPIC_API_KEY', st.secrets.get('ANTHROPIC_API_KEY', ''))
hf_key = os.getenv('HF_KEY', st.secrets.get('HF_KEY', ''))
openai_client = OpenAI(api_key=openai_api_key)
claude_client = anthropic.Anthropic(api_key=anthropic_key)
# 3. Session State Management
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'current_audio' not in st.session_state:
st.session_state.current_audio = None
if 'autoplay_audio' not in st.session_state:
st.session_state.autoplay_audio = True
if 'last_search' not in st.session_state:
st.session_state.last_search = None
if 'file_content' not in st.session_state:
st.session_state.file_content = None
if 'current_file' not in st.session_state:
st.session_state.current_file = None
# 4. Utility Functions
def get_download_link(file_path):
"""Generate download link for any file type"""
with open(file_path, "rb") as file:
contents = file.read()
b64 = base64.b64encode(contents).decode()
file_name = os.path.basename(file_path)
file_type = file_name.split('.')[-1]
mime_types = {
'md': 'text/markdown',
'mp3': 'audio/mpeg',
'mp4': 'video/mp4',
'pdf': 'application/pdf',
'txt': 'text/plain'
}
mime_type = mime_types.get(file_type, 'application/octet-stream')
return f'<a href="data:{mime_type};base64,{b64}" download="{file_name}">⬇️ Download {file_name}</a>'
def generate_filename(content, file_type="md"):
"""Generate unique filename with timestamp"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
safe_content = re.sub(r'[^\w\s-]', '', content[:50])
return f"{timestamp}_{safe_content}.{file_type}"
def get_autoplay_audio_html(audio_path, width="100%"):
"""Create HTML for autoplaying audio with controls"""
try:
with open(audio_path, "rb") as audio_file:
audio_bytes = audio_file.read()
audio_b64 = base64.b64encode(audio_bytes).decode()
return f'''
<audio controls autoplay style="width: {width};">
<source src="data:audio/mpeg;base64,{audio_b64}" type="audio/mpeg">
Your browser does not support the audio element.
</audio>
<div style="margin-top: 5px;">
<a href="data:audio/mpeg;base64,{audio_b64}"
download="{os.path.basename(audio_path)}"
style="text-decoration: none;">
⬇️ Download Audio
</a>
</div>
'''
except Exception as e:
return f"Error loading audio: {str(e)}"
def get_video_html(video_path, width="100%"):
"""Create HTML for autoplaying video with controls"""
video_url = f"data:video/mp4;base64,{base64.b64encode(open(video_path, 'rb').read()).decode()}"
return f'''
<video width="{width}" controls autoplay muted loop>
<source src="{video_url}" type="video/mp4">
Your browser does not support the video tag.
</video>
'''
# 5. Voice Recognition Component
def create_voice_component():
"""Create voice recognition component with visual feedback"""
return components.html(
"""
<div style="padding: 20px; border-radius: 10px; background: #f0f2f6;">
<button id="startBtn" class="streamlit-button">Start Voice Search</button>
<p id="status">Click to start speaking</p>
<div id="result"></div>
<script>
if ('webkitSpeechRecognition' in window) {
const recognition = new webkitSpeechRecognition();
recognition.continuous = false;
recognition.interimResults = true;
const startBtn = document.getElementById('startBtn');
const status = document.getElementById('status');
const result = document.getElementById('result');
startBtn.onclick = () => {
recognition.start();
status.textContent = 'Listening...';
};
recognition.onresult = (event) => {
const transcript = Array.from(event.results)
.map(result => result[0].transcript)
.join('');
result.textContent = transcript;
if (event.results[0].isFinal) {
window.parent.postMessage({
type: 'voice_search',
query: transcript
}, '*');
}
};
recognition.onend = () => {
status.textContent = 'Click to start speaking';
};
}
</script>
</div>
""",
height=200
)
# 6. Audio Processing Functions
async def generate_audio(text, voice="en-US-AriaNeural", rate="+0%", pitch="+0Hz"):
"""Generate audio using Edge TTS with automatic playback"""
if not text.strip():
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = f"response_{timestamp}.mp3"
communicate = edge_tts.Communicate(text, voice, rate=rate, pitch=pitch)
await communicate.save(output_file)
return output_file
def render_audio_result(audio_file, title="Generated Audio"):
"""Render audio result with autoplay in Streamlit"""
if audio_file and os.path.exists(audio_file):
st.markdown(f"### {title}")
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
# 7. Search and Process Functions
def perform_arxiv_search(query, response_type="summary"):
"""Perform Arxiv search with voice response"""
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
# Get search results
refs = client.predict(
query,
20,
"Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md"
)[0]
# Get AI interpretation
summary = client.predict(
query,
"mistralai/Mixtral-8x7B-Instruct-v0.1",
True,
api_name="/ask_llm"
)
response_text = summary if response_type == "summary" else refs
return response_text, refs
async def process_voice_search_with_autoplay(query):
"""Process voice search with automatic audio playback"""
summary, full_results = perform_arxiv_search(query)
audio_file = await generate_audio(summary)
st.session_state.current_audio = audio_file
st.session_state.last_search = {
'query': query,
'summary': summary,
'full_results': full_results,
'audio': audio_file,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
if audio_file:
render_audio_result(audio_file, "Search Results")
return audio_file
def display_search_results_with_audio():
"""Display search results with autoplaying audio"""
if st.session_state.last_search:
st.subheader("Latest Results")
st.markdown(st.session_state.last_search['summary'])
with st.expander("View Full Results"):
st.markdown(st.session_state.last_search['full_results'])
if st.session_state.current_audio:
render_audio_result(st.session_state.current_audio, "Audio Summary")
# 8. UI Components
def render_search_interface():
"""Render main search interface"""
st.header("🔍 Voice Search")
create_voice_component()
col1, col2 = st.columns([3, 1])
with col1:
query = st.text_input("Or type your query:")
with col2:
if st.button("🔍 Search"):
asyncio.run(process_voice_search_with_autoplay(query))
display_search_results_with_audio()
def display_search_history():
"""Display search history with audio playback"""
st.header("Search History")
if st.session_state.chat_history:
for idx, entry in enumerate(reversed(st.session_state.chat_history)):
with st.expander(
f"🔍 {entry['timestamp']} - {entry['query'][:50]}...",
expanded=False
):
st.markdown(entry['summary'])
if 'audio' in entry and entry['audio']:
render_audio_result(entry['audio'], "Recorded Response")
def render_settings():
"""Render settings interface"""
st.sidebar.title("⚙️ Settings")
voice_options = [
"en-US-AriaNeural",
"en-US-GuyNeural",
"en-GB-SoniaNeural",
"en-AU-NatashaNeural"
]
settings = {
'voice': st.sidebar.selectbox("Select Voice", voice_options),
'autoplay': st.sidebar.checkbox("Autoplay Responses", value=True),
'rate': st.sidebar.slider("Speech Rate", -50, 50, 0, 5),
'pitch': st.sidebar.slider("Pitch", -50, 50, 0, 5)
}
return settings
def display_file_manager():
"""Display file manager in sidebar"""
st.sidebar.title("📁 File Manager")
all_files = []
for ext in ['.md', '.mp3', '.mp4']:
all_files.extend(glob.glob(f"*{ext}"))
all_files.sort(key=os.path.getmtime, reverse=True)
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("🗑 Delete All"):
for file in all_files:
os.remove(file)
st.rerun()
with col2:
if st.button("⬇️ Download All"):
zip_name = f"archive_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
with zipfile.ZipFile(zip_name, 'w') as zipf:
for file in all_files:
zipf.write(file)
st.sidebar.markdown(get_download_link(zip_name), unsafe_allow_html=True)
for file in all_files:
with st.sidebar.expander(f"📄 {os.path.basename(file)}", expanded=False):
st.write(f"Last modified: {datetime.fromtimestamp(os.path.getmtime(file)).strftime('%Y-%m-%d %H:%M:%S')}")
col1, col2 = st.columns(2)
with col1:
st.markdown(get_download_link(file), unsafe_allow_html=True)
with col2:
if st.button("🗑 Delete", key=f"del_{file}"):
os.remove(file)
st.rerun()
# 9. Main Application
def main():
st.title("🔬 Research Assistant Pro")
settings = render_settings()
display_file_manager()
tabs = st.tabs(["🎤 Voice Search", "📚 History", "🎵 Media", "⚙️ Settings"])
with tabs[0]:
render_search_interface()
with tabs[1]:
display_search_history()
with tabs[2]:
st.header("Media Gallery")
media_tabs = st.tabs(["🎵 Audio", "🎥 Video", "📷 Images"])
with media_tabs[0]:
audio_files = glob.glob("*.mp3")
if audio_files:
for audio_file in audio_files:
st.markdown(get_autoplay_audio_html(audio_file), unsafe_allow_html=True)
else:
st.write("No audio files found")
with media_tabs[1]:
video_files = glob.glob("*.mp4")
if video_files:
for video_file in video_files:
st.markdown(get_video_html(video_file), unsafe_allow_html=True)
else:
st.write("No video files found")
with media_tabs[2]:
image_files = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
if image_files:
cols = st.columns(3)
for idx, image_file in enumerate(image_files):
with cols[idx % 3]:
st.image(Image.open(image_file), use_column_width=True)
st.markdown(get_download_link(image_file), unsafe_allow_html=True)
else:
st.write("No image files found")
with tabs[3]:
st.header("Advanced Settings")
st.subheader("Audio Settings")
audio_settings = {
'quality': st.select_slider(
"Audio Quality",
options=["Low", "Medium", "High"],
value="Medium"
),
'save_history': st.checkbox(
"Save Audio History",
value=True,
help="Save generated audio files in history"
),
'max_duration': st.slider(
"Max Audio Duration (seconds)",
min_value=30,
max_value=300,
value=120,
step=30
)
}
st.subheader("Search Settings")
search_settings = {
'max_results': st.slider(
"Max Search Results",
min_value=5,
max_value=50,
value=20
),
'include_citations': st.checkbox(
"Include Citations",
value=True
),
'auto_summarize': st.checkbox(
"Auto-Summarize Results",
value=True
)
}
st.subheader("File Management")
file_settings = {
'auto_cleanup': st.checkbox(
"Auto-cleanup Old Files",
value=False,
help="Automatically remove files older than the specified duration"
)
}
if file_settings['auto_cleanup']:
file_settings['cleanup_days'] = st.number_input(
"Days to keep files",
min_value=1,
max_value=30,
value=7
)
# 10. Custom CSS Styling
st.markdown("""
<style>
.main {
background: linear-gradient(135deg, #f5f7fa 0%, #e8edf5 100%);
}
.stButton>button {
background-color: #4CAF50;
color: white;
padding: 0.5rem 1rem;
border-radius: 5px;
border: none;
transition: background-color 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.audio-player {
margin: 1rem 0;
padding: 1rem;
border-radius: 10px;
background: white;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.file-manager {
padding: 1rem;
background: white;
border-radius: 10px;
margin: 1rem 0;
}
</style>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()