awacke1 commited on
Commit
47566ab
·
verified ·
1 Parent(s): 10337da

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -1
app.py CHANGED
@@ -427,7 +427,7 @@ def display_papers(papers):
427
  for idx, paper in enumerate(papers):
428
  papercount = papercount + 1
429
  if (papercount<=20):
430
- with st.expander(f"📄 {paper['title']}", expanded=True):
431
  st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
432
  st.markdown(f"*{paper['authors']}*")
433
  st.markdown(paper['summary'])
@@ -820,6 +820,87 @@ def main():
820
  if st.button("❌ Close"):
821
  st.session_state.viewing_prefix = None
822
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823
  if st.session_state.should_rerun:
824
  st.session_state.should_rerun = False
825
  st.rerun()
 
427
  for idx, paper in enumerate(papers):
428
  papercount = papercount + 1
429
  if (papercount<=20):
430
+ with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
431
  st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
432
  st.markdown(f"*{paper['authors']}*")
433
  st.markdown(paper['summary'])
 
820
  if st.button("❌ Close"):
821
  st.session_state.viewing_prefix = None
822
 
823
+ markdownPapers = """
824
+
825
+ # Levels of AGI
826
+
827
+ ## 1. Performance (rows) x Generality (columns)
828
+ - **Narrow**
829
+ - *clearly scoped or set of tasks*
830
+ - **General**
831
+ - *wide range of non-physical tasks, including metacognitive abilities like learning new skills*
832
+
833
+ ## 2. Levels of AGI
834
+
835
+ ### 2.1 Level 0: No AI
836
+ - **Narrow Non-AI**
837
+ - Calculator software; compiler
838
+ - **General Non-AI**
839
+ - Human-in-the-loop computing, e.g., Amazon Mechanical Turk
840
+
841
+ ### 2.2 Level 1: Emerging
842
+ *equal to or somewhat better than an unskilled human*
843
+ - **Emerging Narrow AI**
844
+ - GOFAI; simple rule-based systems
845
+ - Example: SHRDLU
846
+ - *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
847
+ - **Emerging AGI**
848
+ - ChatGPT (OpenAI, 2023)
849
+ - Bard (Anil et al., 2023)
850
+ - *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
851
+ - LLaMA 2 (Touvron et al., 2023)
852
+ - *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
853
+
854
+ ### 2.3 Level 2: Competent
855
+ *at least 50th percentile of skilled adults*
856
+ - **Competent Narrow AI**
857
+ - Toxicity detectors such as Jigsaw
858
+ - *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
859
+ - Smart Speakers (Apple, Amazon, Google)
860
+ - VQA systems (PaLI)
861
+ - *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
862
+ - Watson (IBM)
863
+ - SOTA LLMs for subsets of tasks
864
+ - **Competent AGI**
865
+ - Not yet achieved
866
+
867
+ ### 2.4 Level 3: Expert
868
+ *at least 90th percentile of skilled adults*
869
+ - **Expert Narrow AI**
870
+ - Spelling & grammar checkers (Grammarly, 2023)
871
+ - Generative image models
872
+ - Example: Imagen
873
+ - *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
874
+ - Example: DALL·E 2
875
+ - *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
876
+ - **Expert AGI**
877
+ - Not yet achieved
878
+
879
+ ### 2.5 Level 4: Virtuoso
880
+ *at least 99th percentile of skilled adults*
881
+ - **Virtuoso Narrow AI**
882
+ - Deep Blue
883
+ - *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
884
+ - AlphaGo
885
+ - *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
886
+ - **Virtuoso AGI**
887
+ - Not yet achieved
888
+
889
+ ### 2.6 Level 5: Superhuman
890
+ *outperforms 100% of humans*
891
+ - **Superhuman Narrow AI**
892
+ - AlphaFold
893
+ - *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
894
+ - AlphaZero
895
+ - *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
896
+ - StockFish
897
+ - *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
898
+ - **Artificial Superintelligence (ASI)**
899
+ - Not yet achieved
900
+
901
+ """
902
+ st.sidebar.markdown(markdownPapers)
903
+
904
  if st.session_state.should_rerun:
905
  st.session_state.should_rerun = False
906
  st.rerun()