Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -427,7 +427,7 @@ def display_papers(papers):
|
|
427 |
for idx, paper in enumerate(papers):
|
428 |
papercount = papercount + 1
|
429 |
if (papercount<=20):
|
430 |
-
with st.expander(f"📄 {paper['title']}", expanded=True):
|
431 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
432 |
st.markdown(f"*{paper['authors']}*")
|
433 |
st.markdown(paper['summary'])
|
@@ -820,6 +820,87 @@ def main():
|
|
820 |
if st.button("❌ Close"):
|
821 |
st.session_state.viewing_prefix = None
|
822 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
823 |
if st.session_state.should_rerun:
|
824 |
st.session_state.should_rerun = False
|
825 |
st.rerun()
|
|
|
427 |
for idx, paper in enumerate(papers):
|
428 |
papercount = papercount + 1
|
429 |
if (papercount<=20):
|
430 |
+
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
|
431 |
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
432 |
st.markdown(f"*{paper['authors']}*")
|
433 |
st.markdown(paper['summary'])
|
|
|
820 |
if st.button("❌ Close"):
|
821 |
st.session_state.viewing_prefix = None
|
822 |
|
823 |
+
markdownPapers = """
|
824 |
+
|
825 |
+
# Levels of AGI
|
826 |
+
|
827 |
+
## 1. Performance (rows) x Generality (columns)
|
828 |
+
- **Narrow**
|
829 |
+
- *clearly scoped or set of tasks*
|
830 |
+
- **General**
|
831 |
+
- *wide range of non-physical tasks, including metacognitive abilities like learning new skills*
|
832 |
+
|
833 |
+
## 2. Levels of AGI
|
834 |
+
|
835 |
+
### 2.1 Level 0: No AI
|
836 |
+
- **Narrow Non-AI**
|
837 |
+
- Calculator software; compiler
|
838 |
+
- **General Non-AI**
|
839 |
+
- Human-in-the-loop computing, e.g., Amazon Mechanical Turk
|
840 |
+
|
841 |
+
### 2.2 Level 1: Emerging
|
842 |
+
*equal to or somewhat better than an unskilled human*
|
843 |
+
- **Emerging Narrow AI**
|
844 |
+
- GOFAI; simple rule-based systems
|
845 |
+
- Example: SHRDLU
|
846 |
+
- *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
|
847 |
+
- **Emerging AGI**
|
848 |
+
- ChatGPT (OpenAI, 2023)
|
849 |
+
- Bard (Anil et al., 2023)
|
850 |
+
- *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
|
851 |
+
- LLaMA 2 (Touvron et al., 2023)
|
852 |
+
- *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
|
853 |
+
|
854 |
+
### 2.3 Level 2: Competent
|
855 |
+
*at least 50th percentile of skilled adults*
|
856 |
+
- **Competent Narrow AI**
|
857 |
+
- Toxicity detectors such as Jigsaw
|
858 |
+
- *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
|
859 |
+
- Smart Speakers (Apple, Amazon, Google)
|
860 |
+
- VQA systems (PaLI)
|
861 |
+
- *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
|
862 |
+
- Watson (IBM)
|
863 |
+
- SOTA LLMs for subsets of tasks
|
864 |
+
- **Competent AGI**
|
865 |
+
- Not yet achieved
|
866 |
+
|
867 |
+
### 2.4 Level 3: Expert
|
868 |
+
*at least 90th percentile of skilled adults*
|
869 |
+
- **Expert Narrow AI**
|
870 |
+
- Spelling & grammar checkers (Grammarly, 2023)
|
871 |
+
- Generative image models
|
872 |
+
- Example: Imagen
|
873 |
+
- *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
|
874 |
+
- Example: DALL·E 2
|
875 |
+
- *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
|
876 |
+
- **Expert AGI**
|
877 |
+
- Not yet achieved
|
878 |
+
|
879 |
+
### 2.5 Level 4: Virtuoso
|
880 |
+
*at least 99th percentile of skilled adults*
|
881 |
+
- **Virtuoso Narrow AI**
|
882 |
+
- Deep Blue
|
883 |
+
- *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
|
884 |
+
- AlphaGo
|
885 |
+
- *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
|
886 |
+
- **Virtuoso AGI**
|
887 |
+
- Not yet achieved
|
888 |
+
|
889 |
+
### 2.6 Level 5: Superhuman
|
890 |
+
*outperforms 100% of humans*
|
891 |
+
- **Superhuman Narrow AI**
|
892 |
+
- AlphaFold
|
893 |
+
- *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
|
894 |
+
- AlphaZero
|
895 |
+
- *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
|
896 |
+
- StockFish
|
897 |
+
- *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
|
898 |
+
- **Artificial Superintelligence (ASI)**
|
899 |
+
- Not yet achieved
|
900 |
+
|
901 |
+
"""
|
902 |
+
st.sidebar.markdown(markdownPapers)
|
903 |
+
|
904 |
if st.session_state.should_rerun:
|
905 |
st.session_state.should_rerun = False
|
906 |
st.rerun()
|