Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -2,36 +2,12 @@ import streamlit as st
|
|
2 |
import anthropic
|
3 |
import openai
|
4 |
import base64
|
5 |
-
import cv2
|
6 |
-
import glob
|
7 |
-
import json
|
8 |
-
import math
|
9 |
import os
|
10 |
-
import pytz
|
11 |
-
import random
|
12 |
import re
|
13 |
-
import
|
14 |
-
import textract
|
15 |
-
import time
|
16 |
-
import zipfile
|
17 |
-
import plotly.graph_objects as go
|
18 |
-
import streamlit.components.v1 as components
|
19 |
from datetime import datetime
|
20 |
-
from audio_recorder_streamlit import audio_recorder
|
21 |
-
from bs4 import BeautifulSoup
|
22 |
-
from collections import defaultdict, deque
|
23 |
-
from dotenv import load_dotenv
|
24 |
from gradio_client import Client
|
25 |
-
from
|
26 |
-
from io import BytesIO
|
27 |
-
from PIL import Image
|
28 |
-
from PyPDF2 import PdfReader
|
29 |
-
from urllib.parse import quote
|
30 |
-
from xml.etree import ElementTree as ET
|
31 |
-
from openai import OpenAI
|
32 |
-
import extra_streamlit_components as stx
|
33 |
-
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
34 |
-
import asyncio
|
35 |
import edge_tts
|
36 |
|
37 |
# 🎯 1. Core Configuration & Setup
|
@@ -46,12 +22,22 @@ st.set_page_config(
|
|
46 |
'About': "🚲BikeAI🏆 Claude/GPT Research AI"
|
47 |
}
|
48 |
)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
# 🔑 2. API Setup & Clients
|
|
|
|
|
|
|
52 |
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
53 |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
54 |
-
xai_key = os.getenv('xai',"")
|
55 |
if 'OPENAI_API_KEY' in st.secrets:
|
56 |
openai_api_key = st.secrets['OPENAI_API_KEY']
|
57 |
if 'ANTHROPIC_API_KEY' in st.secrets:
|
@@ -59,9 +45,7 @@ if 'ANTHROPIC_API_KEY' in st.secrets:
|
|
59 |
|
60 |
openai.api_key = openai_api_key
|
61 |
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
62 |
-
openai_client =
|
63 |
-
HF_KEY = os.getenv('HF_KEY')
|
64 |
-
API_URL = os.getenv('API_URL')
|
65 |
|
66 |
# 📝 3. Session State Management
|
67 |
if 'transcript_history' not in st.session_state:
|
@@ -69,17 +53,9 @@ if 'transcript_history' not in st.session_state:
|
|
69 |
if 'chat_history' not in st.session_state:
|
70 |
st.session_state['chat_history'] = []
|
71 |
if 'openai_model' not in st.session_state:
|
72 |
-
st.session_state['openai_model'] = "gpt-
|
73 |
if 'messages' not in st.session_state:
|
74 |
st.session_state['messages'] = []
|
75 |
-
if 'last_voice_input' not in st.session_state:
|
76 |
-
st.session_state['last_voice_input'] = ""
|
77 |
-
if 'editing_file' not in st.session_state:
|
78 |
-
st.session_state['editing_file'] = None
|
79 |
-
if 'edit_new_name' not in st.session_state:
|
80 |
-
st.session_state['edit_new_name'] = ""
|
81 |
-
if 'edit_new_content' not in st.session_state:
|
82 |
-
st.session_state['edit_new_content'] = ""
|
83 |
if 'viewing_prefix' not in st.session_state:
|
84 |
st.session_state['viewing_prefix'] = None
|
85 |
if 'should_rerun' not in st.session_state:
|
@@ -87,23 +63,7 @@ if 'should_rerun' not in st.session_state:
|
|
87 |
if 'old_val' not in st.session_state:
|
88 |
st.session_state['old_val'] = None
|
89 |
|
90 |
-
#
|
91 |
-
st.markdown("""
|
92 |
-
<style>
|
93 |
-
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
94 |
-
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
95 |
-
.stButton>button {
|
96 |
-
margin-right: 0.5rem;
|
97 |
-
}
|
98 |
-
</style>
|
99 |
-
""", unsafe_allow_html=True)
|
100 |
-
|
101 |
-
FILE_EMOJIS = {
|
102 |
-
"md": "📝",
|
103 |
-
"mp3": "🎵",
|
104 |
-
}
|
105 |
-
|
106 |
-
# 🧠 5. High-Information Content Extraction
|
107 |
def get_high_info_terms(text: str) -> list:
|
108 |
"""Extract high-information terms from text, including key phrases."""
|
109 |
stop_words = set([
|
@@ -164,7 +124,7 @@ def clean_text_for_filename(text: str) -> str:
|
|
164 |
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
165 |
return '_'.join(filtered)[:200]
|
166 |
|
167 |
-
# 📁
|
168 |
def generate_filename(prompt, response, file_type="md"):
|
169 |
"""
|
170 |
Generate filename with meaningful terms and short dense clips from prompt & response.
|
@@ -202,7 +162,7 @@ def get_download_link(file):
|
|
202 |
b64 = base64.b64encode(f.read()).decode()
|
203 |
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
|
204 |
|
205 |
-
# 🔊
|
206 |
def clean_for_speech(text: str) -> str:
|
207 |
"""Clean text for speech synthesis"""
|
208 |
text = text.replace("\n", " ")
|
@@ -212,20 +172,7 @@ def clean_for_speech(text: str) -> str:
|
|
212 |
text = re.sub(r"\s+", " ", text).strip()
|
213 |
return text
|
214 |
|
215 |
-
|
216 |
-
def speech_synthesis_html(result):
|
217 |
-
"""Create HTML for speech synthesis"""
|
218 |
-
html_code = f"""
|
219 |
-
<html><body>
|
220 |
-
<script>
|
221 |
-
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
|
222 |
-
window.speechSynthesis.speak(msg);
|
223 |
-
</script>
|
224 |
-
</body></html>
|
225 |
-
"""
|
226 |
-
components.html(html_code, height=0)
|
227 |
-
|
228 |
-
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
229 |
"""Generate audio using Edge TTS (async)"""
|
230 |
text = clean_for_speech(text)
|
231 |
if not text.strip():
|
@@ -233,13 +180,12 @@ async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=
|
|
233 |
rate_str = f"{rate:+d}%"
|
234 |
pitch_str = f"{pitch:+d}Hz"
|
235 |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
236 |
-
out_fn = generate_filename(text, text, "mp3")
|
237 |
await communicate.save(out_fn)
|
238 |
return out_fn
|
239 |
|
240 |
-
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0):
|
241 |
-
"""Wrapper for
|
242 |
-
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch))
|
243 |
|
244 |
def play_and_download_audio(file_path):
|
245 |
"""Play and provide a download link for audio"""
|
@@ -249,10 +195,7 @@ def play_and_download_audio(file_path):
|
|
249 |
st.markdown(dl_link, unsafe_allow_html=True)
|
250 |
|
251 |
def auto_play_audio(file_path):
|
252 |
-
"""
|
253 |
-
Reads MP3 file as base64, displays an <audio> tag with autoplay + controls + download link.
|
254 |
-
Note: Some browsers block audio autoplay if there's no user interaction.
|
255 |
-
"""
|
256 |
if not file_path or not os.path.exists(file_path):
|
257 |
return
|
258 |
with open(file_path, "rb") as f:
|
@@ -271,45 +214,44 @@ def auto_play_audio(file_path):
|
|
271 |
|
272 |
def generate_audio_filename(query, title, summary):
|
273 |
"""
|
274 |
-
|
|
|
275 |
"""
|
276 |
combined = (query + " " + title + " " + summary).strip().lower()
|
277 |
-
combined = re.sub(r'[^\w\s-]', '', combined) #
|
278 |
-
combined = "_".join(combined.split())[:80] #
|
279 |
prefix = datetime.now().strftime("%y%m_%H%M")
|
280 |
return f"{prefix}_{combined}.mp3"
|
281 |
|
282 |
-
# 🎬
|
283 |
def process_image(image_path, user_prompt):
|
284 |
-
"""Process image with GPT-4V
|
285 |
with open(image_path, "rb") as imgf:
|
286 |
image_data = imgf.read()
|
287 |
b64img = base64.b64encode(image_data).decode("utf-8")
|
288 |
-
resp = openai_client.
|
289 |
model=st.session_state["openai_model"],
|
290 |
messages=[
|
291 |
{"role": "system", "content": "You are a helpful assistant."},
|
292 |
-
{
|
293 |
-
"
|
294 |
-
"
|
295 |
-
|
296 |
-
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
|
297 |
-
]
|
298 |
-
}
|
299 |
],
|
300 |
temperature=0.0,
|
301 |
)
|
302 |
return resp.choices[0].message.content
|
303 |
|
304 |
-
def
|
305 |
-
"""Process audio with Whisper
|
306 |
with open(audio_path, "rb") as f:
|
307 |
-
transcription = openai_client.
|
308 |
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
309 |
return transcription.text
|
310 |
|
311 |
def process_video(video_path, seconds_per_frame=1):
|
312 |
-
"""Extract frames from video
|
|
|
313 |
vid = cv2.VideoCapture(video_path)
|
314 |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
315 |
fps = vid.get(cv2.CAP_PROP_FPS)
|
@@ -326,145 +268,25 @@ def process_video(video_path, seconds_per_frame=1):
|
|
326 |
return frames_b64
|
327 |
|
328 |
def process_video_with_gpt(video_path, prompt):
|
329 |
-
"""Analyze video frames with GPT-4V
|
330 |
frames = process_video(video_path)
|
331 |
-
resp = openai_client.
|
332 |
model=st.session_state["openai_model"],
|
333 |
messages=[
|
334 |
{"role": "system", "content": "Analyze video frames."},
|
335 |
-
{
|
336 |
-
"
|
337 |
-
"
|
338 |
-
|
339 |
-
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
340 |
-
]
|
341 |
-
}
|
342 |
]
|
343 |
)
|
344 |
return resp.choices[0].message.content
|
345 |
|
346 |
-
# 🤖
|
347 |
-
|
348 |
def save_full_transcript(query, text):
|
349 |
"""Save full transcript of Arxiv results as a file."""
|
350 |
create_file(query, text, "md")
|
351 |
|
352 |
-
# ---------------------------------------------------
|
353 |
-
# NEW: Extremely simple "parse_arxiv_refs" logic
|
354 |
-
# that reads each non-empty line, up to 20 lines.
|
355 |
-
# Extract bracketed title if present, year if present.
|
356 |
-
# The entire line is the "summary" for display + TTS.
|
357 |
-
# ---------------------------------------------------
|
358 |
-
def parse_arxiv_refs(ref_text: str):
|
359 |
-
lines = ref_text.split('\n')
|
360 |
-
# remove empty lines
|
361 |
-
lines = [ln.strip() for ln in lines if ln.strip()]
|
362 |
-
# limit to 20
|
363 |
-
lines = lines[:20]
|
364 |
-
|
365 |
-
refs = []
|
366 |
-
for ln in lines:
|
367 |
-
# bracketed title if found
|
368 |
-
bracket_match = re.search(r"\[([^\]]+)\]", ln)
|
369 |
-
title = bracket_match.group(1) if bracket_match else "No Title"
|
370 |
-
# find a year 20xx if present
|
371 |
-
year_match = re.search(r"(20\d{2})", ln)
|
372 |
-
year = int(year_match.group(1)) if year_match else None
|
373 |
-
|
374 |
-
refs.append({
|
375 |
-
"line": ln, # the entire raw line for display
|
376 |
-
"title": title, # bracketed content or "No Title"
|
377 |
-
"year": year # e.g. 2023, 2024, or None
|
378 |
-
})
|
379 |
-
return refs
|
380 |
-
|
381 |
-
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
382 |
-
titles_summary=True, full_audio=False):
|
383 |
-
"""
|
384 |
-
1) Query the RAG pipeline
|
385 |
-
2) Display results
|
386 |
-
3) Also parse references into lines, up to 20
|
387 |
-
4) Show each reference with full content
|
388 |
-
5) If year in [2023, 2024], auto-generate TTS
|
389 |
-
"""
|
390 |
-
start = time.time()
|
391 |
-
|
392 |
-
# 1) Query HF RAG pipeline
|
393 |
-
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
394 |
-
# 20 references
|
395 |
-
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
396 |
-
api_name="/update_with_rag_md")[0]
|
397 |
-
# Main summary
|
398 |
-
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
|
399 |
-
|
400 |
-
# 2) Combine for final text
|
401 |
-
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
402 |
-
st.markdown(result)
|
403 |
-
|
404 |
-
# Optionally produce "all at once" TTS
|
405 |
-
if full_audio:
|
406 |
-
complete_text = f"Complete response for query: {q}. {clean_for_speech(r2)} {clean_for_speech(refs)}"
|
407 |
-
audio_file_full = speak_with_edge_tts(complete_text)
|
408 |
-
st.write("### 📚 Full Audio")
|
409 |
-
play_and_download_audio(audio_file_full)
|
410 |
-
|
411 |
-
if vocal_summary:
|
412 |
-
main_text = clean_for_speech(r2)
|
413 |
-
audio_file_main = speak_with_edge_tts(main_text)
|
414 |
-
st.write("### 🎙 Short Audio")
|
415 |
-
play_and_download_audio(audio_file_main)
|
416 |
-
|
417 |
-
if extended_refs:
|
418 |
-
summaries_text = "Extended references: " + refs.replace('"','')
|
419 |
-
summaries_text = clean_for_speech(summaries_text)
|
420 |
-
audio_file_refs = speak_with_edge_tts(summaries_text)
|
421 |
-
st.write("### 📜 Long Refs")
|
422 |
-
play_and_download_audio(audio_file_refs)
|
423 |
-
|
424 |
-
# 3) Parse references
|
425 |
-
parsed = parse_arxiv_refs(refs)
|
426 |
-
|
427 |
-
# 4) Show references
|
428 |
-
st.write("## Individual Paper Lines (Up to 20)")
|
429 |
-
for i, ref in enumerate(parsed):
|
430 |
-
st.markdown(f"**Ref #{i+1}**: {ref['line']}")
|
431 |
-
if ref['year'] in [2023, 2024]:
|
432 |
-
# TTS content: "Title + entire line"
|
433 |
-
tts_text = f"Title: {ref['title']}. Full content: {ref['line']}"
|
434 |
-
out_fn = generate_audio_filename(q, ref['title'], ref['line'])
|
435 |
-
tmp_mp3 = speak_with_edge_tts(tts_text)
|
436 |
-
if tmp_mp3 and os.path.exists(tmp_mp3):
|
437 |
-
# rename to out_fn
|
438 |
-
os.rename(tmp_mp3, out_fn)
|
439 |
-
# auto-play
|
440 |
-
auto_play_audio(out_fn)
|
441 |
-
st.write("---")
|
442 |
-
|
443 |
-
# Titles only block
|
444 |
-
if titles_summary:
|
445 |
-
# This was your older code - parse bracketed titles from each line
|
446 |
-
# to produce an all-in-one TTS if desired
|
447 |
-
lines = refs.split('\n')
|
448 |
-
titles = []
|
449 |
-
for line in lines:
|
450 |
-
m = re.search(r"\[([^\]]+)\]", line)
|
451 |
-
if m:
|
452 |
-
titles.append(m.group(1))
|
453 |
-
if titles:
|
454 |
-
titles_text = "Titles: " + ", ".join(titles)
|
455 |
-
titles_text = clean_for_speech(titles_text)
|
456 |
-
audio_file_titles = speak_with_edge_tts(titles_text)
|
457 |
-
st.write("### 🔖 Titles (All-In-One)")
|
458 |
-
play_and_download_audio(audio_file_titles)
|
459 |
-
|
460 |
-
elapsed = time.time() - start
|
461 |
-
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
462 |
-
|
463 |
-
# 5) Save entire text as MD file
|
464 |
-
create_file(q, result, "md")
|
465 |
-
|
466 |
-
return result
|
467 |
-
|
468 |
def process_with_gpt(text):
|
469 |
"""Process text with GPT-4"""
|
470 |
if not text:
|
@@ -473,13 +295,13 @@ def process_with_gpt(text):
|
|
473 |
with st.chat_message("user"):
|
474 |
st.markdown(text)
|
475 |
with st.chat_message("assistant"):
|
476 |
-
c = openai_client.
|
477 |
model=st.session_state["openai_model"],
|
478 |
messages=st.session_state.messages,
|
479 |
stream=False
|
480 |
)
|
481 |
ans = c.choices[0].message.content
|
482 |
-
st.write("GPT-
|
483 |
create_file(text, ans, "md")
|
484 |
st.session_state.messages.append({"role":"assistant","content":ans})
|
485 |
return ans
|
@@ -491,20 +313,20 @@ def process_with_claude(text):
|
|
491 |
with st.chat_message("user"):
|
492 |
st.markdown(text)
|
493 |
with st.chat_message("assistant"):
|
494 |
-
r = claude_client.
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
)
|
499 |
-
ans = r
|
500 |
st.write("Claude-3.5: " + ans)
|
501 |
create_file(text, ans, "md")
|
502 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
503 |
return ans
|
504 |
|
505 |
-
# 📂
|
506 |
def create_zip_of_files(md_files, mp3_files):
|
507 |
-
"""Create zip with
|
508 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
509 |
all_files = md_files + mp3_files
|
510 |
if not all_files:
|
@@ -542,7 +364,7 @@ def load_files_for_sidebar():
|
|
542 |
groups = defaultdict(list)
|
543 |
for f in all_files:
|
544 |
fname = os.path.basename(f)
|
545 |
-
prefix = fname[:10] # e.g
|
546 |
groups[prefix].append(f)
|
547 |
|
548 |
for prefix in groups:
|
@@ -613,87 +435,32 @@ def display_file_manager_sidebar(groups, sorted_prefixes):
|
|
613 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
|
614 |
st.write(f"**{fname}** - {ctime}")
|
615 |
|
616 |
-
# 🎯
|
617 |
def main():
|
618 |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
|
619 |
tab_main = st.radio("Action:", ["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"], horizontal=True)
|
620 |
|
621 |
-
#
|
622 |
-
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
623 |
-
val = mycomponent(my_input_value="Hello")
|
624 |
-
|
625 |
-
#
|
626 |
-
if val:
|
627 |
-
|
628 |
-
|
629 |
-
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
|
630 |
-
col1, col2 = st.columns(2)
|
631 |
-
with col1:
|
632 |
-
autorun = st.checkbox("⚙ AutoRun", value=True)
|
633 |
-
with col2:
|
634 |
-
full_audio = st.checkbox("📚FullAudio", value=False,
|
635 |
-
help="Generate full audio response")
|
636 |
-
|
637 |
-
input_changed = (val != st.session_state.old_val)
|
638 |
-
|
639 |
-
if autorun and input_changed:
|
640 |
-
st.session_state.old_val = val
|
641 |
-
if run_option == "Arxiv":
|
642 |
-
perform_ai_lookup(edited_input,
|
643 |
-
vocal_summary=True,
|
644 |
-
extended_refs=False,
|
645 |
-
titles_summary=True,
|
646 |
-
full_audio=full_audio)
|
647 |
-
elif run_option == "GPT-4o":
|
648 |
-
process_with_gpt(edited_input)
|
649 |
-
elif run_option == "Claude-3.5":
|
650 |
-
process_with_claude(edited_input)
|
651 |
-
else:
|
652 |
-
if st.button("▶ Run"):
|
653 |
-
st.session_state.old_val = val
|
654 |
-
if run_option == "Arxiv":
|
655 |
-
perform_ai_lookup(edited_input,
|
656 |
-
vocal_summary=True,
|
657 |
-
extended_refs=False,
|
658 |
-
titles_summary=True,
|
659 |
-
full_audio=full_audio)
|
660 |
-
elif run_option == "GPT-4o":
|
661 |
-
process_with_gpt(edited_input)
|
662 |
-
elif run_option == "Claude-3.5":
|
663 |
-
process_with_claude(edited_input)
|
664 |
|
665 |
if tab_main == "🔍 ArXiv":
|
666 |
st.subheader("🔍 Query ArXiv")
|
667 |
q = st.text_input("🔍 Query:")
|
668 |
|
669 |
st.markdown("### 🎛 Options")
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
full_transcript = st.checkbox("🧾FullTranscript", value=False,
|
676 |
-
help="Generate a full transcript file")
|
677 |
-
|
678 |
-
if q and st.button("🔍Run"):
|
679 |
-
result = perform_ai_lookup(q,
|
680 |
-
vocal_summary=vocal_summary,
|
681 |
-
extended_refs=extended_refs,
|
682 |
-
titles_summary=titles_summary,
|
683 |
-
full_audio=full_audio)
|
684 |
-
if full_transcript:
|
685 |
-
save_full_transcript(q, result)
|
686 |
-
|
687 |
-
st.markdown("### Change Prompt & Re-Run")
|
688 |
-
q_new = st.text_input("🔄 Modify Query:")
|
689 |
-
if q_new and st.button("🔄 Re-Run with Modified Query"):
|
690 |
-
result = perform_ai_lookup(q_new,
|
691 |
-
vocal_summary=vocal_summary,
|
692 |
-
extended_refs=extended_refs,
|
693 |
-
titles_summary=titles_summary,
|
694 |
-
full_audio=full_audio)
|
695 |
if full_transcript:
|
696 |
-
|
697 |
|
698 |
elif tab_main == "🎤 Voice":
|
699 |
st.subheader("🎤 Voice Input")
|
@@ -702,7 +469,7 @@ def main():
|
|
702 |
if st.button("📨 Send"):
|
703 |
process_with_gpt(user_text)
|
704 |
st.subheader("📜 Chat History")
|
705 |
-
t1, t2 = st.tabs(["Claude History","GPT-
|
706 |
with t1:
|
707 |
for c in st.session_state.chat_history:
|
708 |
st.write("**You:**", c["user"])
|
@@ -716,12 +483,11 @@ def main():
|
|
716 |
st.header("📸 Images & 🎥 Videos")
|
717 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
718 |
with tabs[0]:
|
719 |
-
imgs = glob.glob("*.png")+glob.glob("*.jpg")
|
720 |
if imgs:
|
721 |
-
|
722 |
-
cols = st.columns(c)
|
723 |
for i, f in enumerate(imgs):
|
724 |
-
with cols[i %
|
725 |
st.image(Image.open(f), use_container_width=True)
|
726 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
727 |
a = process_image(f, "Describe this image.")
|
@@ -729,28 +495,33 @@ def main():
|
|
729 |
else:
|
730 |
st.write("No images found.")
|
731 |
with tabs[1]:
|
732 |
-
vids = glob.glob("*.mp4")
|
733 |
if vids:
|
734 |
for v in vids:
|
735 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
736 |
st.video(v)
|
737 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
738 |
-
a = process_video_with_gpt(v, "Describe video.")
|
739 |
st.markdown(a)
|
740 |
else:
|
741 |
st.write("No videos found.")
|
742 |
|
743 |
elif tab_main == "📝 Editor":
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
st.
|
751 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
752 |
else:
|
753 |
-
st.write("
|
754 |
|
755 |
# File manager in sidebar
|
756 |
groups, sorted_prefixes = load_files_for_sidebar()
|
@@ -776,7 +547,120 @@ def main():
|
|
776 |
|
777 |
if st.session_state.should_rerun:
|
778 |
st.session_state.should_rerun = False
|
779 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
|
|
|
781 |
if __name__ == "__main__":
|
782 |
main()
|
|
|
2 |
import anthropic
|
3 |
import openai
|
4 |
import base64
|
|
|
|
|
|
|
|
|
5 |
import os
|
|
|
|
|
6 |
import re
|
7 |
+
import asyncio
|
|
|
|
|
|
|
|
|
|
|
8 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
9 |
from gradio_client import Client
|
10 |
+
from collections import defaultdict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import edge_tts
|
12 |
|
13 |
# 🎯 1. Core Configuration & Setup
|
|
|
22 |
'About': "🚲BikeAI🏆 Claude/GPT Research AI"
|
23 |
}
|
24 |
)
|
25 |
+
st.markdown("""
|
26 |
+
<style>
|
27 |
+
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
28 |
+
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
29 |
+
.stButton>button {
|
30 |
+
margin-right: 0.5rem;
|
31 |
+
}
|
32 |
+
</style>
|
33 |
+
""", unsafe_allow_html=True)
|
34 |
|
35 |
# 🔑 2. API Setup & Clients
|
36 |
+
from dotenv import load_dotenv
|
37 |
+
load_dotenv()
|
38 |
+
|
39 |
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
40 |
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
|
|
41 |
if 'OPENAI_API_KEY' in st.secrets:
|
42 |
openai_api_key = st.secrets['OPENAI_API_KEY']
|
43 |
if 'ANTHROPIC_API_KEY' in st.secrets:
|
|
|
45 |
|
46 |
openai.api_key = openai_api_key
|
47 |
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
48 |
+
openai_client = openai # Using OpenAI directly
|
|
|
|
|
49 |
|
50 |
# 📝 3. Session State Management
|
51 |
if 'transcript_history' not in st.session_state:
|
|
|
53 |
if 'chat_history' not in st.session_state:
|
54 |
st.session_state['chat_history'] = []
|
55 |
if 'openai_model' not in st.session_state:
|
56 |
+
st.session_state['openai_model'] = "gpt-4" # Update as needed
|
57 |
if 'messages' not in st.session_state:
|
58 |
st.session_state['messages'] = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if 'viewing_prefix' not in st.session_state:
|
60 |
st.session_state['viewing_prefix'] = None
|
61 |
if 'should_rerun' not in st.session_state:
|
|
|
63 |
if 'old_val' not in st.session_state:
|
64 |
st.session_state['old_val'] = None
|
65 |
|
66 |
+
# 🧠 4. High-Information Content Extraction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def get_high_info_terms(text: str) -> list:
|
68 |
"""Extract high-information terms from text, including key phrases."""
|
69 |
stop_words = set([
|
|
|
124 |
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
125 |
return '_'.join(filtered)[:200]
|
126 |
|
127 |
+
# 📁 5. File Operations
|
128 |
def generate_filename(prompt, response, file_type="md"):
|
129 |
"""
|
130 |
Generate filename with meaningful terms and short dense clips from prompt & response.
|
|
|
162 |
b64 = base64.b64encode(f.read()).decode()
|
163 |
return f'<a href="data:file/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
|
164 |
|
165 |
+
# 🔊 6. Audio Processing
|
166 |
def clean_for_speech(text: str) -> str:
|
167 |
"""Clean text for speech synthesis"""
|
168 |
text = text.replace("\n", " ")
|
|
|
172 |
text = re.sub(r"\s+", " ", text).strip()
|
173 |
return text
|
174 |
|
175 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, out_fn="temp.mp3"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
"""Generate audio using Edge TTS (async)"""
|
177 |
text = clean_for_speech(text)
|
178 |
if not text.strip():
|
|
|
180 |
rate_str = f"{rate:+d}%"
|
181 |
pitch_str = f"{pitch:+d}Hz"
|
182 |
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
|
|
183 |
await communicate.save(out_fn)
|
184 |
return out_fn
|
185 |
|
186 |
+
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, out_fn="temp.mp3"):
|
187 |
+
"""Wrapper for Edge TTS generation (sync)"""
|
188 |
+
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, out_fn))
|
189 |
|
190 |
def play_and_download_audio(file_path):
|
191 |
"""Play and provide a download link for audio"""
|
|
|
195 |
st.markdown(dl_link, unsafe_allow_html=True)
|
196 |
|
197 |
def auto_play_audio(file_path):
|
198 |
+
"""Embeds an <audio> tag with autoplay + controls + a download link."""
|
|
|
|
|
|
|
199 |
if not file_path or not os.path.exists(file_path):
|
200 |
return
|
201 |
with open(file_path, "rb") as f:
|
|
|
214 |
|
215 |
def generate_audio_filename(query, title, summary):
|
216 |
"""
|
217 |
+
Generate a specialized MP3 filename using query + title + summary.
|
218 |
+
Example: "2310_1205_query_title_summary.mp3"
|
219 |
"""
|
220 |
combined = (query + " " + title + " " + summary).strip().lower()
|
221 |
+
combined = re.sub(r'[^\w\s-]', '', combined) # Remove special characters
|
222 |
+
combined = "_".join(combined.split())[:80] # Limit length
|
223 |
prefix = datetime.now().strftime("%y%m_%H%M")
|
224 |
return f"{prefix}_{combined}.mp3"
|
225 |
|
226 |
+
# 🎬 7. Media Processing
|
227 |
def process_image(image_path, user_prompt):
|
228 |
+
"""Process image with GPT-4V"""
|
229 |
with open(image_path, "rb") as imgf:
|
230 |
image_data = imgf.read()
|
231 |
b64img = base64.b64encode(image_data).decode("utf-8")
|
232 |
+
resp = openai_client.ChatCompletion.create(
|
233 |
model=st.session_state["openai_model"],
|
234 |
messages=[
|
235 |
{"role": "system", "content": "You are a helpful assistant."},
|
236 |
+
{"role": "user", "content": [
|
237 |
+
{"type": "text", "text": user_prompt},
|
238 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
|
239 |
+
]}
|
|
|
|
|
|
|
240 |
],
|
241 |
temperature=0.0,
|
242 |
)
|
243 |
return resp.choices[0].message.content
|
244 |
|
245 |
+
def process_audio_with_whisper(audio_path):
|
246 |
+
"""Process audio with Whisper"""
|
247 |
with open(audio_path, "rb") as f:
|
248 |
+
transcription = openai_client.Audio.transcriptions.create(model="whisper-1", file=f)
|
249 |
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
250 |
return transcription.text
|
251 |
|
252 |
def process_video(video_path, seconds_per_frame=1):
|
253 |
+
"""Extract frames from video"""
|
254 |
+
import cv2
|
255 |
vid = cv2.VideoCapture(video_path)
|
256 |
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
257 |
fps = vid.get(cv2.CAP_PROP_FPS)
|
|
|
268 |
return frames_b64
|
269 |
|
270 |
def process_video_with_gpt(video_path, prompt):
|
271 |
+
"""Analyze video frames with GPT-4V"""
|
272 |
frames = process_video(video_path)
|
273 |
+
resp = openai_client.ChatCompletion.create(
|
274 |
model=st.session_state["openai_model"],
|
275 |
messages=[
|
276 |
{"role": "system", "content": "Analyze video frames."},
|
277 |
+
{"role": "user", "content": [
|
278 |
+
{"type": "text", "text": prompt},
|
279 |
+
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
280 |
+
]}
|
|
|
|
|
|
|
281 |
]
|
282 |
)
|
283 |
return resp.choices[0].message.content
|
284 |
|
285 |
+
# 🤖 8. AI Model Integration
|
|
|
286 |
def save_full_transcript(query, text):
|
287 |
"""Save full transcript of Arxiv results as a file."""
|
288 |
create_file(query, text, "md")
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
def process_with_gpt(text):
|
291 |
"""Process text with GPT-4"""
|
292 |
if not text:
|
|
|
295 |
with st.chat_message("user"):
|
296 |
st.markdown(text)
|
297 |
with st.chat_message("assistant"):
|
298 |
+
c = openai_client.ChatCompletion.create(
|
299 |
model=st.session_state["openai_model"],
|
300 |
messages=st.session_state.messages,
|
301 |
stream=False
|
302 |
)
|
303 |
ans = c.choices[0].message.content
|
304 |
+
st.write("GPT-4: " + ans)
|
305 |
create_file(text, ans, "md")
|
306 |
st.session_state.messages.append({"role":"assistant","content":ans})
|
307 |
return ans
|
|
|
313 |
with st.chat_message("user"):
|
314 |
st.markdown(text)
|
315 |
with st.chat_message("assistant"):
|
316 |
+
r = claude_client.completions.create(
|
317 |
+
prompt=text,
|
318 |
+
model="claude-3",
|
319 |
+
max_tokens=1000
|
320 |
)
|
321 |
+
ans = r['completion']
|
322 |
st.write("Claude-3.5: " + ans)
|
323 |
create_file(text, ans, "md")
|
324 |
st.session_state.chat_history.append({"user":text,"claude":ans})
|
325 |
return ans
|
326 |
|
327 |
+
# 📂 9. File Management
|
328 |
def create_zip_of_files(md_files, mp3_files):
|
329 |
+
"""Create zip with intelligent naming"""
|
330 |
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
331 |
all_files = md_files + mp3_files
|
332 |
if not all_files:
|
|
|
364 |
groups = defaultdict(list)
|
365 |
for f in all_files:
|
366 |
fname = os.path.basename(f)
|
367 |
+
prefix = fname[:10] # e.g., "2310_1205_"
|
368 |
groups[prefix].append(f)
|
369 |
|
370 |
for prefix in groups:
|
|
|
435 |
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%Y-%m-%d %H:%M:%S")
|
436 |
st.write(f"**{fname}** - {ctime}")
|
437 |
|
438 |
+
# 🎯 10. Main Application
|
439 |
def main():
|
440 |
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
|
441 |
tab_main = st.radio("Action:", ["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"], horizontal=True)
|
442 |
|
443 |
+
# Placeholder for custom component if needed
|
444 |
+
# mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
445 |
+
# val = mycomponent(my_input_value="Hello")
|
446 |
+
|
447 |
+
# Example input handling
|
448 |
+
# if val:
|
449 |
+
# # Handle custom component input
|
450 |
+
# pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
|
452 |
if tab_main == "🔍 ArXiv":
|
453 |
st.subheader("🔍 Query ArXiv")
|
454 |
q = st.text_input("🔍 Query:")
|
455 |
|
456 |
st.markdown("### 🎛 Options")
|
457 |
+
full_audio = st.checkbox("📚 Full Audio", value=False, help="Generate full audio response")
|
458 |
+
full_transcript = st.checkbox("🧾 Full Transcript", value=False, help="Generate a full transcript file")
|
459 |
+
|
460 |
+
if q and st.button("🔍 Run Query"):
|
461 |
+
perform_ai_lookup(q)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
462 |
if full_transcript:
|
463 |
+
create_file(q, "Full transcript generated.", "md") # Customize as needed
|
464 |
|
465 |
elif tab_main == "🎤 Voice":
|
466 |
st.subheader("🎤 Voice Input")
|
|
|
469 |
if st.button("📨 Send"):
|
470 |
process_with_gpt(user_text)
|
471 |
st.subheader("📜 Chat History")
|
472 |
+
t1, t2 = st.tabs(["Claude History","GPT-4 History"])
|
473 |
with t1:
|
474 |
for c in st.session_state.chat_history:
|
475 |
st.write("**You:**", c["user"])
|
|
|
483 |
st.header("📸 Images & 🎥 Videos")
|
484 |
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
485 |
with tabs[0]:
|
486 |
+
imgs = glob.glob("*.png") + glob.glob("*.jpg") + glob.glob("*.jpeg")
|
487 |
if imgs:
|
488 |
+
cols = st.columns(st.slider("Cols", 1, 5, 3))
|
|
|
489 |
for i, f in enumerate(imgs):
|
490 |
+
with cols[i % len(cols)]:
|
491 |
st.image(Image.open(f), use_container_width=True)
|
492 |
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
493 |
a = process_image(f, "Describe this image.")
|
|
|
495 |
else:
|
496 |
st.write("No images found.")
|
497 |
with tabs[1]:
|
498 |
+
vids = glob.glob("*.mp4") + glob.glob("*.avi") + glob.glob("*.mov")
|
499 |
if vids:
|
500 |
for v in vids:
|
501 |
with st.expander(f"🎥 {os.path.basename(v)}"):
|
502 |
st.video(v)
|
503 |
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
504 |
+
a = process_video_with_gpt(v, "Describe this video.")
|
505 |
st.markdown(a)
|
506 |
else:
|
507 |
st.write("No videos found.")
|
508 |
|
509 |
elif tab_main == "📝 Editor":
|
510 |
+
st.subheader("📝 File Editor")
|
511 |
+
# Example editor logic: list markdown files and allow editing
|
512 |
+
md_files = glob.glob("*.md")
|
513 |
+
if md_files:
|
514 |
+
selected_file = st.selectbox("Select a file to edit:", md_files)
|
515 |
+
with st.form("edit_form"):
|
516 |
+
new_content = st.text_area("✏️ Content:", open(selected_file, 'r', encoding='utf-8').read(), height=300)
|
517 |
+
submitted = st.form_submit_button("💾 Save")
|
518 |
+
if submitted:
|
519 |
+
with open(selected_file, 'w', encoding='utf-8') as f:
|
520 |
+
f.write(new_content)
|
521 |
+
st.success(f"Updated {selected_file}!")
|
522 |
+
st.session_state.should_rerun = True
|
523 |
else:
|
524 |
+
st.write("No markdown files available to edit.")
|
525 |
|
526 |
# File manager in sidebar
|
527 |
groups, sorted_prefixes = load_files_for_sidebar()
|
|
|
547 |
|
548 |
if st.session_state.should_rerun:
|
549 |
st.session_state.should_rerun = False
|
550 |
+
st.experimental_rerun()
|
551 |
+
|
552 |
+
def parse_arxiv_papers(ref_text: str):
|
553 |
+
"""
|
554 |
+
Splits the references into paper-level chunks.
|
555 |
+
Each paper starts with a number followed by a parenthesis, e.g., "1) [Title (Year)] Summary..."
|
556 |
+
Returns a list of dictionaries with 'title', 'summary', and 'year'.
|
557 |
+
Limits to 20 papers.
|
558 |
+
"""
|
559 |
+
# Split based on patterns like "1) ", "2) ", etc.
|
560 |
+
chunks = re.split(r'\n?\d+\)\s+', ref_text)
|
561 |
+
# Remove any empty strings resulting from split
|
562 |
+
chunks = [chunk.strip() for chunk in chunks if chunk.strip()]
|
563 |
+
papers = []
|
564 |
+
for chunk in chunks[:20]:
|
565 |
+
# Extract title within brackets if present
|
566 |
+
title_match = re.search(r'\[([^\]]+)\]', chunk)
|
567 |
+
title = title_match.group(1).strip() if title_match else "No Title"
|
568 |
+
|
569 |
+
# Extract year (assuming it's a 4-digit number within the title or summary)
|
570 |
+
year_match = re.search(r'\b(20\d{2})\b', chunk)
|
571 |
+
year = int(year_match.group(1)) if year_match else None
|
572 |
+
|
573 |
+
# The entire chunk is considered the summary
|
574 |
+
summary = chunk
|
575 |
+
|
576 |
+
papers.append({
|
577 |
+
'title': title,
|
578 |
+
'summary': summary,
|
579 |
+
'year': year
|
580 |
+
})
|
581 |
+
return papers
|
582 |
+
|
583 |
+
def perform_ai_lookup(q):
|
584 |
+
"""
|
585 |
+
Performs the Arxiv search and handles the processing of results.
|
586 |
+
Generates audio files for each paper (if year is 2023 or 2024).
|
587 |
+
"""
|
588 |
+
st.write(f"## Query: {q}")
|
589 |
+
|
590 |
+
# 1) Query the HF RAG pipeline
|
591 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
592 |
+
refs = client.predict(q, 20, "Semantic Search", "mistralai/Mixtral-8x7B-Instruct-v0.1", api_name="/update_with_rag_md")[0]
|
593 |
+
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1", True, api_name="/ask_llm")
|
594 |
+
|
595 |
+
# 2) Combine for final text output
|
596 |
+
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
597 |
+
st.markdown(result)
|
598 |
+
|
599 |
+
# 3) Parse references into papers
|
600 |
+
papers = parse_arxiv_papers(refs)
|
601 |
+
|
602 |
+
# 4) Display each paper and generate audio if applicable
|
603 |
+
st.write("## Individual Papers (Up to 20)")
|
604 |
+
for idx, paper in enumerate(papers):
|
605 |
+
year_str = paper["year"] if paper["year"] else "Unknown Year"
|
606 |
+
st.markdown(f"**Paper #{idx+1}: {paper['title']}** \n*Year:* {year_str}")
|
607 |
+
st.markdown(f"*Summary:* {paper['summary']}")
|
608 |
+
st.write("---")
|
609 |
+
|
610 |
+
# Generate TTS if year is 2023 or 2024
|
611 |
+
if paper["year"] in [2023, 2024]:
|
612 |
+
# Combine title and summary for TTS
|
613 |
+
tts_text = f"Title: {paper['title']}. Summary: {paper['summary']}"
|
614 |
+
# Generate a specialized filename
|
615 |
+
mp3_filename = generate_audio_filename(q, paper['title'], paper['summary'])
|
616 |
+
# Generate audio using Edge TTS
|
617 |
+
temp_mp3 = speak_with_edge_tts(tts_text, out_fn=mp3_filename)
|
618 |
+
if temp_mp3 and os.path.exists(mp3_filename):
|
619 |
+
# Embed the audio player with auto-play and download link
|
620 |
+
auto_play_audio(mp3_filename)
|
621 |
+
|
622 |
+
# Optionally save the full transcript
|
623 |
+
st.write("### Transcript")
|
624 |
+
st.markdown(result)
|
625 |
+
create_file(q, result, "md")
|
626 |
+
|
627 |
+
def process_with_gpt(text):
|
628 |
+
"""Process text with GPT-4"""
|
629 |
+
if not text:
|
630 |
+
return
|
631 |
+
st.session_state.messages.append({"role":"user","content":text})
|
632 |
+
with st.chat_message("user"):
|
633 |
+
st.markdown(text)
|
634 |
+
with st.chat_message("assistant"):
|
635 |
+
c = openai_client.ChatCompletion.create(
|
636 |
+
model=st.session_state["openai_model"],
|
637 |
+
messages=st.session_state.messages,
|
638 |
+
stream=False
|
639 |
+
)
|
640 |
+
ans = c.choices[0].message.content
|
641 |
+
st.write("GPT-4: " + ans)
|
642 |
+
create_file(text, ans, "md")
|
643 |
+
st.session_state.messages.append({"role":"assistant","content":ans})
|
644 |
+
return ans
|
645 |
+
|
646 |
+
def process_with_claude(text):
|
647 |
+
"""Process text with Claude"""
|
648 |
+
if not text:
|
649 |
+
return
|
650 |
+
with st.chat_message("user"):
|
651 |
+
st.markdown(text)
|
652 |
+
with st.chat_message("assistant"):
|
653 |
+
r = claude_client.completions.create(
|
654 |
+
prompt=text,
|
655 |
+
model="claude-3",
|
656 |
+
max_tokens=1000
|
657 |
+
)
|
658 |
+
ans = r['completion']
|
659 |
+
st.write("Claude-3.5: " + ans)
|
660 |
+
create_file(text, ans, "md")
|
661 |
+
st.session_state.chat_history.append({"user":text,"claude":ans})
|
662 |
+
return ans
|
663 |
|
664 |
+
# Run the app
|
665 |
if __name__ == "__main__":
|
666 |
main()
|