Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Create backup12.app.py
Browse files- backup12.app.py +955 -0
backup12.app.py
ADDED
@@ -0,0 +1,955 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import anthropic, openai, base64, cv2, glob, json, math, os, pytz, random, re, requests, textract, time, zipfile
|
3 |
+
import plotly.graph_objects as go
|
4 |
+
import streamlit.components.v1 as components
|
5 |
+
from datetime import datetime
|
6 |
+
from audio_recorder_streamlit import audio_recorder
|
7 |
+
from bs4 import BeautifulSoup
|
8 |
+
from collections import defaultdict, deque, Counter
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from gradio_client import Client
|
11 |
+
from huggingface_hub import InferenceClient
|
12 |
+
from io import BytesIO
|
13 |
+
from PIL import Image
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
+
from urllib.parse import quote
|
16 |
+
from xml.etree import ElementTree as ET
|
17 |
+
from openai import OpenAI
|
18 |
+
import extra_streamlit_components as stx
|
19 |
+
from streamlit.runtime.scriptrunner import get_script_run_ctx
|
20 |
+
import asyncio
|
21 |
+
import edge_tts
|
22 |
+
|
23 |
+
# 🎯 1. Core Configuration & Setup
|
24 |
+
st.set_page_config(
|
25 |
+
page_title="🚲TalkingAIResearcher🏆",
|
26 |
+
page_icon="🚲🏆",
|
27 |
+
layout="wide",
|
28 |
+
initial_sidebar_state="auto",
|
29 |
+
menu_items={
|
30 |
+
'Get Help': 'https://huggingface.co/awacke1',
|
31 |
+
'Report a bug': 'https://huggingface.co/spaces/awacke1',
|
32 |
+
'About': "🚲TalkingAIResearcher🏆"
|
33 |
+
}
|
34 |
+
)
|
35 |
+
load_dotenv()
|
36 |
+
|
37 |
+
# Add available English voices for Edge TTS
|
38 |
+
EDGE_TTS_VOICES = [
|
39 |
+
"en-US-AriaNeural", # Default voice
|
40 |
+
"en-US-GuyNeural",
|
41 |
+
"en-US-JennyNeural",
|
42 |
+
"en-GB-SoniaNeural",
|
43 |
+
"en-GB-RyanNeural",
|
44 |
+
"en-AU-NatashaNeural",
|
45 |
+
"en-AU-WilliamNeural",
|
46 |
+
"en-CA-ClaraNeural",
|
47 |
+
"en-CA-LiamNeural"
|
48 |
+
]
|
49 |
+
|
50 |
+
# Initialize session state variables
|
51 |
+
if 'tts_voice' not in st.session_state:
|
52 |
+
st.session_state['tts_voice'] = EDGE_TTS_VOICES[0] # Default voice
|
53 |
+
if 'audio_format' not in st.session_state:
|
54 |
+
st.session_state['audio_format'] = 'mp3' # 🆕 Default audio format
|
55 |
+
|
56 |
+
# 🔑 2. API Setup & Clients
|
57 |
+
openai_api_key = os.getenv('OPENAI_API_KEY', "")
|
58 |
+
anthropic_key = os.getenv('ANTHROPIC_API_KEY_3', "")
|
59 |
+
xai_key = os.getenv('xai',"")
|
60 |
+
if 'OPENAI_API_KEY' in st.secrets:
|
61 |
+
openai_api_key = st.secrets['OPENAI_API_KEY']
|
62 |
+
if 'ANTHROPIC_API_KEY' in st.secrets:
|
63 |
+
anthropic_key = st.secrets["ANTHROPIC_API_KEY"]
|
64 |
+
|
65 |
+
openai.api_key = openai_api_key
|
66 |
+
claude_client = anthropic.Anthropic(api_key=anthropic_key)
|
67 |
+
openai_client = OpenAI(api_key=openai.api_key, organization=os.getenv('OPENAI_ORG_ID'))
|
68 |
+
HF_KEY = os.getenv('HF_KEY')
|
69 |
+
API_URL = os.getenv('API_URL')
|
70 |
+
|
71 |
+
# 📝 3. Session State Management
|
72 |
+
if 'transcript_history' not in st.session_state:
|
73 |
+
st.session_state['transcript_history'] = []
|
74 |
+
if 'chat_history' not in st.session_state:
|
75 |
+
st.session_state['chat_history'] = []
|
76 |
+
if 'openai_model' not in st.session_state:
|
77 |
+
st.session_state['openai_model'] = "gpt-4o-2024-05-13"
|
78 |
+
if 'messages' not in st.session_state:
|
79 |
+
st.session_state['messages'] = []
|
80 |
+
if 'last_voice_input' not in st.session_state:
|
81 |
+
st.session_state['last_voice_input'] = ""
|
82 |
+
if 'editing_file' not in st.session_state:
|
83 |
+
st.session_state['editing_file'] = None
|
84 |
+
if 'edit_new_name' not in st.session_state:
|
85 |
+
st.session_state['edit_new_name'] = ""
|
86 |
+
if 'edit_new_content' not in st.session_state:
|
87 |
+
st.session_state['edit_new_content'] = ""
|
88 |
+
if 'viewing_prefix' not in st.session_state:
|
89 |
+
st.session_state['viewing_prefix'] = None
|
90 |
+
if 'should_rerun' not in st.session_state:
|
91 |
+
st.session_state['should_rerun'] = False
|
92 |
+
if 'old_val' not in st.session_state:
|
93 |
+
st.session_state['old_val'] = None
|
94 |
+
if 'last_query' not in st.session_state:
|
95 |
+
st.session_state['last_query'] = "" # 🆕 Store the last query for zip naming
|
96 |
+
|
97 |
+
# 🎨 4. Custom CSS
|
98 |
+
st.markdown("""
|
99 |
+
<style>
|
100 |
+
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
|
101 |
+
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
|
102 |
+
.stButton>button {
|
103 |
+
margin-right: 0.5rem;
|
104 |
+
}
|
105 |
+
</style>
|
106 |
+
""", unsafe_allow_html=True)
|
107 |
+
|
108 |
+
FILE_EMOJIS = {
|
109 |
+
"md": "📝",
|
110 |
+
"mp3": "🎵",
|
111 |
+
"wav": "🔊" # 🆕 Add emoji for WAV
|
112 |
+
}
|
113 |
+
|
114 |
+
# 🧠 5. High-Information Content Extraction
|
115 |
+
def get_high_info_terms(text: str, top_n=10) -> list:
|
116 |
+
"""Extract high-information terms from text, including key phrases."""
|
117 |
+
stop_words = set([
|
118 |
+
'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with',
|
119 |
+
'by', 'from', 'up', 'about', 'into', 'over', 'after', 'is', 'are', 'was', 'were',
|
120 |
+
'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would',
|
121 |
+
'should', 'could', 'might', 'must', 'shall', 'can', 'may', 'this', 'that', 'these',
|
122 |
+
'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they', 'what', 'which', 'who',
|
123 |
+
'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most',
|
124 |
+
'other', 'some', 'such', 'than', 'too', 'very', 'just', 'there'
|
125 |
+
])
|
126 |
+
|
127 |
+
key_phrases = [
|
128 |
+
'artificial intelligence', 'machine learning', 'deep learning', 'neural network',
|
129 |
+
'personal assistant', 'natural language', 'computer vision', 'data science',
|
130 |
+
'reinforcement learning', 'knowledge graph', 'semantic search', 'time series',
|
131 |
+
'large language model', 'transformer model', 'attention mechanism',
|
132 |
+
'autonomous system', 'edge computing', 'quantum computing', 'blockchain technology',
|
133 |
+
'cognitive science', 'human computer', 'decision making', 'arxiv search',
|
134 |
+
'research paper', 'scientific study', 'empirical analysis'
|
135 |
+
]
|
136 |
+
|
137 |
+
# Extract bi-grams and uni-grams
|
138 |
+
words = re.findall(r'\b\w+(?:-\w+)*\b', text.lower())
|
139 |
+
bi_grams = [' '.join(pair) for pair in zip(words, words[1:])]
|
140 |
+
combined = words + bi_grams
|
141 |
+
|
142 |
+
# Filter out stop words and short words
|
143 |
+
filtered = [
|
144 |
+
term for term in combined
|
145 |
+
if term not in stop_words
|
146 |
+
and len(term.split()) <= 2 # Limit to uni-grams and bi-grams
|
147 |
+
and any(c.isalpha() for c in term)
|
148 |
+
]
|
149 |
+
|
150 |
+
# Count frequencies
|
151 |
+
counter = Counter(filtered)
|
152 |
+
most_common = [term for term, freq in counter.most_common(top_n)]
|
153 |
+
return most_common
|
154 |
+
|
155 |
+
def clean_text_for_filename(text: str) -> str:
|
156 |
+
"""Remove punctuation and short filler words, return a compact string."""
|
157 |
+
text = text.lower()
|
158 |
+
text = re.sub(r'[^\w\s-]', '', text)
|
159 |
+
words = text.split()
|
160 |
+
stop_short = set(['the','and','for','with','this','that','from','just','very','then','been','only','also','about'])
|
161 |
+
filtered = [w for w in words if len(w)>3 and w not in stop_short]
|
162 |
+
return '_'.join(filtered)[:200]
|
163 |
+
|
164 |
+
# 📁 6. File Operations
|
165 |
+
def generate_filename(prompt, response, file_type="md"):
|
166 |
+
"""
|
167 |
+
Generate filename with meaningful terms and short dense clips from prompt & response.
|
168 |
+
The filename should be about 150 chars total, include high-info terms, and a clipped snippet.
|
169 |
+
"""
|
170 |
+
prefix = datetime.now().strftime("%y%m_%H%M") + "_"
|
171 |
+
combined = (prompt + " " + response).strip()
|
172 |
+
info_terms = get_high_info_terms(combined, top_n=10)
|
173 |
+
|
174 |
+
# Include a short snippet from prompt and response
|
175 |
+
snippet = (prompt[:100] + " " + response[:100]).strip()
|
176 |
+
snippet_cleaned = clean_text_for_filename(snippet)
|
177 |
+
|
178 |
+
# Combine info terms and snippet
|
179 |
+
name_parts = info_terms + [snippet_cleaned]
|
180 |
+
full_name = '_'.join(name_parts)
|
181 |
+
|
182 |
+
# Trim to ~150 chars
|
183 |
+
if len(full_name) > 150:
|
184 |
+
full_name = full_name[:150]
|
185 |
+
|
186 |
+
filename = f"{prefix}{full_name}.{file_type}"
|
187 |
+
return filename
|
188 |
+
|
189 |
+
def create_file(prompt, response, file_type="md"):
|
190 |
+
"""Create file with intelligent naming"""
|
191 |
+
filename = generate_filename(prompt.strip(), response.strip(), file_type)
|
192 |
+
with open(filename, 'w', encoding='utf-8') as f:
|
193 |
+
f.write(prompt + "\n\n" + response)
|
194 |
+
return filename
|
195 |
+
|
196 |
+
def get_download_link(file, file_type="zip"):
|
197 |
+
"""Generate download link for file"""
|
198 |
+
with open(file, "rb") as f:
|
199 |
+
b64 = base64.b64encode(f.read()).decode()
|
200 |
+
if file_type == "zip":
|
201 |
+
return f'<a href="data:application/zip;base64,{b64}" download="{os.path.basename(file)}">📂 Download {os.path.basename(file)}</a>'
|
202 |
+
elif file_type == "mp3":
|
203 |
+
return f'<a href="data:audio/mpeg;base64,{b64}" download="{os.path.basename(file)}">🎵 Download {os.path.basename(file)}</a>'
|
204 |
+
elif file_type == "wav":
|
205 |
+
return f'<a href="data:audio/wav;base64,{b64}" download="{os.path.basename(file)}">🔊 Download {os.path.basename(file)}</a>' # 🆕 WAV download link
|
206 |
+
elif file_type == "md":
|
207 |
+
return f'<a href="data:text/markdown;base64,{b64}" download="{os.path.basename(file)}">📝 Download {os.path.basename(file)}</a>'
|
208 |
+
else:
|
209 |
+
return f'<a href="data:application/octet-stream;base64,{b64}" download="{os.path.basename(file)}">Download {os.path.basename(file)}</a>'
|
210 |
+
|
211 |
+
# 🔊 7. Audio Processing
|
212 |
+
def clean_for_speech(text: str) -> str:
|
213 |
+
"""Clean text for speech synthesis"""
|
214 |
+
text = text.replace("\n", " ")
|
215 |
+
text = text.replace("</s>", " ")
|
216 |
+
text = text.replace("#", "")
|
217 |
+
text = re.sub(r"\(https?:\/\/[^\)]+\)", "", text)
|
218 |
+
text = re.sub(r"\s+", " ", text).strip()
|
219 |
+
return text
|
220 |
+
|
221 |
+
@st.cache_resource
|
222 |
+
def speech_synthesis_html(result):
|
223 |
+
"""Create HTML for speech synthesis"""
|
224 |
+
html_code = f"""
|
225 |
+
<html><body>
|
226 |
+
<script>
|
227 |
+
var msg = new SpeechSynthesisUtterance("{result.replace('"', '')}");
|
228 |
+
window.speechSynthesis.speak(msg);
|
229 |
+
</script>
|
230 |
+
</body></html>
|
231 |
+
"""
|
232 |
+
components.html(html_code, height=0)
|
233 |
+
|
234 |
+
async def edge_tts_generate_audio(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
235 |
+
"""Generate audio using Edge TTS"""
|
236 |
+
text = clean_for_speech(text)
|
237 |
+
if not text.strip():
|
238 |
+
return None
|
239 |
+
rate_str = f"{rate:+d}%"
|
240 |
+
pitch_str = f"{pitch:+d}Hz"
|
241 |
+
communicate = edge_tts.Communicate(text, voice, rate=rate_str, pitch=pitch_str)
|
242 |
+
out_fn = generate_filename(text, text, file_type=file_format)
|
243 |
+
await communicate.save(out_fn)
|
244 |
+
return out_fn
|
245 |
+
|
246 |
+
def speak_with_edge_tts(text, voice="en-US-AriaNeural", rate=0, pitch=0, file_format="mp3"):
|
247 |
+
"""Wrapper for edge TTS generation"""
|
248 |
+
return asyncio.run(edge_tts_generate_audio(text, voice, rate, pitch, file_format))
|
249 |
+
|
250 |
+
def play_and_download_audio(file_path, file_type="mp3"):
|
251 |
+
"""Play and provide download link for audio"""
|
252 |
+
if file_path and os.path.exists(file_path):
|
253 |
+
if file_type == "mp3":
|
254 |
+
st.audio(file_path)
|
255 |
+
elif file_type == "wav":
|
256 |
+
st.audio(file_path)
|
257 |
+
dl_link = get_download_link(file_path, file_type=file_type)
|
258 |
+
st.markdown(dl_link, unsafe_allow_html=True)
|
259 |
+
|
260 |
+
# 🎬 8. Media Processing
|
261 |
+
def process_image(image_path, user_prompt):
|
262 |
+
"""Process image with GPT-4V"""
|
263 |
+
with open(image_path, "rb") as imgf:
|
264 |
+
image_data = imgf.read()
|
265 |
+
b64img = base64.b64encode(image_data).decode("utf-8")
|
266 |
+
resp = openai_client.chat.completions.create(
|
267 |
+
model=st.session_state["openai_model"],
|
268 |
+
messages=[
|
269 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
270 |
+
{"role": "user", "content": [
|
271 |
+
{"type": "text", "text": user_prompt},
|
272 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64img}"}}
|
273 |
+
]}
|
274 |
+
],
|
275 |
+
temperature=0.0,
|
276 |
+
)
|
277 |
+
return resp.choices[0].message.content
|
278 |
+
|
279 |
+
def process_audio_file(audio_path):
|
280 |
+
"""Process audio with Whisper"""
|
281 |
+
with open(audio_path, "rb") as f:
|
282 |
+
transcription = openai_client.audio.transcriptions.create(model="whisper-1", file=f)
|
283 |
+
st.session_state.messages.append({"role": "user", "content": transcription.text})
|
284 |
+
return transcription.text
|
285 |
+
|
286 |
+
def process_video(video_path, seconds_per_frame=1):
|
287 |
+
"""Extract frames from video"""
|
288 |
+
vid = cv2.VideoCapture(video_path)
|
289 |
+
total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT))
|
290 |
+
fps = vid.get(cv2.CAP_PROP_FPS)
|
291 |
+
skip = int(fps*seconds_per_frame)
|
292 |
+
frames_b64 = []
|
293 |
+
for i in range(0, total, skip):
|
294 |
+
vid.set(cv2.CAP_PROP_POS_FRAMES, i)
|
295 |
+
ret, frame = vid.read()
|
296 |
+
if not ret:
|
297 |
+
break
|
298 |
+
_, buf = cv2.imencode(".jpg", frame)
|
299 |
+
frames_b64.append(base64.b64encode(buf).decode("utf-8"))
|
300 |
+
vid.release()
|
301 |
+
return frames_b64
|
302 |
+
|
303 |
+
def process_video_with_gpt(video_path, prompt):
|
304 |
+
"""Analyze video frames with GPT-4V"""
|
305 |
+
frames = process_video(video_path)
|
306 |
+
resp = openai_client.chat.completions.create(
|
307 |
+
model=st.session_state["openai_model"],
|
308 |
+
messages=[
|
309 |
+
{"role":"system","content":"Analyze video frames."},
|
310 |
+
{"role":"user","content":[
|
311 |
+
{"type":"text","text":prompt},
|
312 |
+
*[{"type":"image_url","image_url":{"url":f"data:image/jpeg;base64,{fr}"}} for fr in frames]
|
313 |
+
]}
|
314 |
+
]
|
315 |
+
)
|
316 |
+
return resp.choices[0].message.content
|
317 |
+
|
318 |
+
# 🤖 9. AI Model Integration
|
319 |
+
|
320 |
+
def save_full_transcript(query, text):
|
321 |
+
"""Save full transcript of Arxiv results as a file."""
|
322 |
+
create_file(query, text, "md")
|
323 |
+
|
324 |
+
def parse_arxiv_refs(ref_text: str):
|
325 |
+
"""
|
326 |
+
Parse papers by finding lines with two pipe characters as title lines.
|
327 |
+
Returns list of paper dictionaries with audio files.
|
328 |
+
"""
|
329 |
+
if not ref_text:
|
330 |
+
return []
|
331 |
+
|
332 |
+
results = []
|
333 |
+
current_paper = {}
|
334 |
+
lines = ref_text.split('\n')
|
335 |
+
|
336 |
+
for i, line in enumerate(lines):
|
337 |
+
# Check if this is a title line (contains exactly 2 pipe characters)
|
338 |
+
if line.count('|') == 2:
|
339 |
+
# If we have a previous paper, add it to results
|
340 |
+
if current_paper:
|
341 |
+
results.append(current_paper)
|
342 |
+
if len(results) >= 20: # Limit to 20 papers
|
343 |
+
break
|
344 |
+
|
345 |
+
# Parse new paper header
|
346 |
+
try:
|
347 |
+
# Remove ** and split by |
|
348 |
+
header_parts = line.strip('* ').split('|')
|
349 |
+
date = header_parts[0].strip()
|
350 |
+
title = header_parts[1].strip()
|
351 |
+
# Extract arXiv URL if present
|
352 |
+
url_match = re.search(r'(https://arxiv.org/\S+)', line)
|
353 |
+
url = url_match.group(1) if url_match else f"paper_{len(results)}"
|
354 |
+
|
355 |
+
current_paper = {
|
356 |
+
'date': date,
|
357 |
+
'title': title,
|
358 |
+
'url': url,
|
359 |
+
'authors': '',
|
360 |
+
'summary': '',
|
361 |
+
'content_start': i + 1 # Track where content begins
|
362 |
+
}
|
363 |
+
except Exception as e:
|
364 |
+
st.warning(f"Error parsing paper header: {str(e)}")
|
365 |
+
current_paper = {}
|
366 |
+
continue
|
367 |
+
|
368 |
+
# If we have a current paper and this isn't a title line, add to content
|
369 |
+
elif current_paper:
|
370 |
+
if not current_paper['authors']: # First line after title is authors
|
371 |
+
current_paper['authors'] = line.strip('* ')
|
372 |
+
else: # Rest is summary
|
373 |
+
if current_paper['summary']:
|
374 |
+
current_paper['summary'] += ' ' + line.strip()
|
375 |
+
else:
|
376 |
+
current_paper['summary'] = line.strip()
|
377 |
+
|
378 |
+
# Don't forget the last paper
|
379 |
+
if current_paper:
|
380 |
+
results.append(current_paper)
|
381 |
+
|
382 |
+
return results[:20] # Ensure we return maximum 20 papers
|
383 |
+
|
384 |
+
def create_paper_audio_files(papers, input_question):
|
385 |
+
"""
|
386 |
+
Create audio files for each paper's content and add file paths to paper dict.
|
387 |
+
Also, display each audio as it's generated.
|
388 |
+
"""
|
389 |
+
# Collect all content for combined summary
|
390 |
+
combined_titles = []
|
391 |
+
|
392 |
+
for paper in papers:
|
393 |
+
try:
|
394 |
+
# Generate audio for full content only
|
395 |
+
full_text = f"{paper['title']} by {paper['authors']}. {paper['summary']}"
|
396 |
+
full_text = clean_for_speech(full_text)
|
397 |
+
# Determine file format based on user selection
|
398 |
+
file_format = st.session_state['audio_format']
|
399 |
+
full_file = speak_with_edge_tts(full_text, voice=st.session_state['tts_voice'], file_format=file_format)
|
400 |
+
paper['full_audio'] = full_file
|
401 |
+
|
402 |
+
# Display the audio immediately after generation
|
403 |
+
st.write(f"### {FILE_EMOJIS.get(file_format, '')} {os.path.basename(full_file)}")
|
404 |
+
play_and_download_audio(full_file, file_type=file_format)
|
405 |
+
|
406 |
+
combined_titles.append(paper['title'])
|
407 |
+
|
408 |
+
except Exception as e:
|
409 |
+
st.warning(f"Error generating audio for paper {paper['title']}: {str(e)}")
|
410 |
+
paper['full_audio'] = None
|
411 |
+
|
412 |
+
# After all individual audios, create a combined summary audio
|
413 |
+
if combined_titles:
|
414 |
+
combined_text = f"Here are the titles of the papers related to your query: {'; '.join(combined_titles)}. Your original question was: {input_question}"
|
415 |
+
file_format = st.session_state['audio_format']
|
416 |
+
combined_file = speak_with_edge_tts(combined_text, voice=st.session_state['tts_voice'], file_format=file_format)
|
417 |
+
st.write(f"### {FILE_EMOJIS.get(file_format, '')} Combined Summary Audio")
|
418 |
+
play_and_download_audio(combined_file, file_type=file_format)
|
419 |
+
papers.append({'title': 'Combined Summary', 'full_audio': combined_file})
|
420 |
+
|
421 |
+
def display_papers(papers):
|
422 |
+
"""
|
423 |
+
Display papers with their audio controls using URLs as unique keys.
|
424 |
+
"""
|
425 |
+
st.write("## Research Papers")
|
426 |
+
papercount=0
|
427 |
+
for idx, paper in enumerate(papers):
|
428 |
+
papercount = papercount + 1
|
429 |
+
if (papercount<=20):
|
430 |
+
with st.expander(f"{papercount}. 📄 {paper['title']}", expanded=True):
|
431 |
+
st.markdown(f"**{paper['date']} | {paper['title']} | ⬇️**")
|
432 |
+
st.markdown(f"*{paper['authors']}*")
|
433 |
+
st.markdown(paper['summary'])
|
434 |
+
|
435 |
+
# Single audio control for full content
|
436 |
+
if paper.get('full_audio'):
|
437 |
+
st.write("📚 Paper Audio")
|
438 |
+
file_ext = os.path.splitext(paper['full_audio'])[1].lower().strip('.')
|
439 |
+
if file_ext == "mp3":
|
440 |
+
st.audio(paper['full_audio'])
|
441 |
+
elif file_ext == "wav":
|
442 |
+
st.audio(paper['full_audio'])
|
443 |
+
|
444 |
+
def perform_ai_lookup(q, vocal_summary=True, extended_refs=False,
|
445 |
+
titles_summary=True, full_audio=False):
|
446 |
+
"""Perform Arxiv search with audio generation per paper."""
|
447 |
+
start = time.time()
|
448 |
+
|
449 |
+
# Query the HF RAG pipeline
|
450 |
+
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
|
451 |
+
refs = client.predict(q, 20, "Semantic Search",
|
452 |
+
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
453 |
+
api_name="/update_with_rag_md")[0]
|
454 |
+
r2 = client.predict(q, "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
455 |
+
True, api_name="/ask_llm")
|
456 |
+
|
457 |
+
# Combine for final text output
|
458 |
+
result = f"### 🔎 {q}\n\n{r2}\n\n{refs}"
|
459 |
+
st.markdown(result)
|
460 |
+
|
461 |
+
# Parse and process papers
|
462 |
+
papers = parse_arxiv_refs(refs)
|
463 |
+
if papers:
|
464 |
+
create_paper_audio_files(papers, input_question=q)
|
465 |
+
display_papers(papers)
|
466 |
+
else:
|
467 |
+
st.warning("No papers found in the response.")
|
468 |
+
|
469 |
+
elapsed = time.time()-start
|
470 |
+
st.write(f"**Total Elapsed:** {elapsed:.2f} s")
|
471 |
+
|
472 |
+
# Save full transcript
|
473 |
+
create_file(q, result, "md")
|
474 |
+
return result
|
475 |
+
|
476 |
+
def process_with_gpt(text):
|
477 |
+
"""Process text with GPT-4"""
|
478 |
+
if not text:
|
479 |
+
return
|
480 |
+
st.session_state.messages.append({"role":"user","content":text})
|
481 |
+
with st.chat_message("user"):
|
482 |
+
st.markdown(text)
|
483 |
+
with st.chat_message("assistant"):
|
484 |
+
c = openai_client.chat.completions.create(
|
485 |
+
model=st.session_state["openai_model"],
|
486 |
+
messages=st.session_state.messages,
|
487 |
+
stream=False
|
488 |
+
)
|
489 |
+
ans = c.choices[0].message.content
|
490 |
+
st.write("GPT-4o: " + ans)
|
491 |
+
create_file(text, ans, "md")
|
492 |
+
st.session_state.messages.append({"role":"assistant","content":ans})
|
493 |
+
return ans
|
494 |
+
|
495 |
+
def process_with_claude(text):
|
496 |
+
"""Process text with Claude"""
|
497 |
+
if not text:
|
498 |
+
return
|
499 |
+
with st.chat_message("user"):
|
500 |
+
st.markdown(text)
|
501 |
+
with st.chat_message("assistant"):
|
502 |
+
r = claude_client.messages.create(
|
503 |
+
model="claude-3-sonnet-20240229",
|
504 |
+
max_tokens=1000,
|
505 |
+
messages=[{"role":"user","content":text}]
|
506 |
+
)
|
507 |
+
ans = r.content[0].text
|
508 |
+
st.write("Claude-3.5: " + ans)
|
509 |
+
create_file(text, ans, "md")
|
510 |
+
st.session_state.chat_history.append({"user":text,"claude":ans})
|
511 |
+
return ans
|
512 |
+
|
513 |
+
# 📂 10. File Management
|
514 |
+
def create_zip_of_files(md_files, mp3_files, wav_files, input_question):
|
515 |
+
"""Create zip with intelligent naming based on top 10 common words."""
|
516 |
+
# Exclude 'readme.md'
|
517 |
+
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
518 |
+
all_files = md_files + mp3_files + wav_files
|
519 |
+
if not all_files:
|
520 |
+
return None
|
521 |
+
|
522 |
+
# Collect content for high-info term extraction
|
523 |
+
all_content = []
|
524 |
+
for f in all_files:
|
525 |
+
if f.endswith('.md'):
|
526 |
+
with open(f, 'r', encoding='utf-8') as file:
|
527 |
+
all_content.append(file.read())
|
528 |
+
elif f.endswith('.mp3') or f.endswith('.wav'):
|
529 |
+
# Replace underscores with spaces and extract basename without extension
|
530 |
+
basename = os.path.splitext(os.path.basename(f))[0]
|
531 |
+
words = basename.replace('_', ' ')
|
532 |
+
all_content.append(words)
|
533 |
+
|
534 |
+
# Include the input question
|
535 |
+
all_content.append(input_question)
|
536 |
+
|
537 |
+
combined_content = " ".join(all_content)
|
538 |
+
info_terms = get_high_info_terms(combined_content, top_n=10)
|
539 |
+
|
540 |
+
timestamp = datetime.now().strftime("%y%m_%H%M")
|
541 |
+
name_text = '_'.join(term.replace(' ', '-') for term in info_terms[:10])
|
542 |
+
zip_name = f"{timestamp}_{name_text}.zip"
|
543 |
+
|
544 |
+
with zipfile.ZipFile(zip_name,'w') as z:
|
545 |
+
for f in all_files:
|
546 |
+
z.write(f)
|
547 |
+
|
548 |
+
return zip_name
|
549 |
+
|
550 |
+
def load_files_for_sidebar():
|
551 |
+
"""Load and group files for sidebar display based on first 9 characters of filename"""
|
552 |
+
md_files = glob.glob("*.md")
|
553 |
+
mp3_files = glob.glob("*.mp3")
|
554 |
+
wav_files = glob.glob("*.wav")
|
555 |
+
|
556 |
+
md_files = [f for f in md_files if os.path.basename(f).lower() != 'readme.md']
|
557 |
+
all_files = md_files + mp3_files + wav_files
|
558 |
+
|
559 |
+
groups = defaultdict(list)
|
560 |
+
for f in all_files:
|
561 |
+
# Get first 9 characters of filename (timestamp) as group name
|
562 |
+
basename = os.path.basename(f)
|
563 |
+
group_name = basename[:9] if len(basename) >= 9 else 'Other'
|
564 |
+
groups[group_name].append(f)
|
565 |
+
|
566 |
+
# Sort groups based on latest file modification time
|
567 |
+
sorted_groups = sorted(groups.items(), key=lambda x: max(os.path.getmtime(f) for f in x[1]), reverse=True)
|
568 |
+
return sorted_groups
|
569 |
+
|
570 |
+
def extract_keywords_from_md(files):
|
571 |
+
"""Extract keywords from markdown files"""
|
572 |
+
text = ""
|
573 |
+
for f in files:
|
574 |
+
if f.endswith(".md"):
|
575 |
+
c = open(f,'r',encoding='utf-8').read()
|
576 |
+
text += " " + c
|
577 |
+
return get_high_info_terms(text, top_n=5)
|
578 |
+
|
579 |
+
def display_file_manager_sidebar(groups_sorted):
|
580 |
+
"""Display file manager in sidebar with timestamp-based groups"""
|
581 |
+
st.sidebar.title("🎵 Audio & Docs Manager")
|
582 |
+
|
583 |
+
all_md = []
|
584 |
+
all_mp3 = []
|
585 |
+
all_wav = []
|
586 |
+
for group_name, files in groups_sorted:
|
587 |
+
for f in files:
|
588 |
+
if f.endswith(".md"):
|
589 |
+
all_md.append(f)
|
590 |
+
elif f.endswith(".mp3"):
|
591 |
+
all_mp3.append(f)
|
592 |
+
elif f.endswith(".wav"):
|
593 |
+
all_wav.append(f)
|
594 |
+
|
595 |
+
top_bar = st.sidebar.columns(4)
|
596 |
+
with top_bar[0]:
|
597 |
+
if st.button("🗑 DelAllMD"):
|
598 |
+
for f in all_md:
|
599 |
+
os.remove(f)
|
600 |
+
st.session_state.should_rerun = True
|
601 |
+
with top_bar[1]:
|
602 |
+
if st.button("🗑 DelAllMP3"):
|
603 |
+
for f in all_mp3:
|
604 |
+
os.remove(f)
|
605 |
+
st.session_state.should_rerun = True
|
606 |
+
with top_bar[2]:
|
607 |
+
if st.button("🗑 DelAllWAV"):
|
608 |
+
for f in all_wav:
|
609 |
+
os.remove(f)
|
610 |
+
st.session_state.should_rerun = True
|
611 |
+
with top_bar[3]:
|
612 |
+
if st.button("⬇️ ZipAll"):
|
613 |
+
zip_name = create_zip_of_files(all_md, all_mp3, all_wav, input_question=st.session_state.get('last_query', ''))
|
614 |
+
if zip_name:
|
615 |
+
st.sidebar.markdown(get_download_link(zip_name, file_type="zip"), unsafe_allow_html=True)
|
616 |
+
|
617 |
+
for group_name, files in groups_sorted:
|
618 |
+
timestamp_dt = datetime.strptime(group_name, "%y%m_%H%M") if len(group_name) == 9 else None
|
619 |
+
group_label = timestamp_dt.strftime("%Y-%m-%d %H:%M") if timestamp_dt else group_name
|
620 |
+
|
621 |
+
with st.sidebar.expander(f"📁 {group_label} ({len(files)})", expanded=True):
|
622 |
+
c1,c2 = st.columns(2)
|
623 |
+
with c1:
|
624 |
+
if st.button("👀ViewGrp", key="view_group_"+group_name):
|
625 |
+
st.session_state.viewing_prefix = group_name
|
626 |
+
with c2:
|
627 |
+
if st.button("🗑DelGrp", key="del_group_"+group_name):
|
628 |
+
for f in files:
|
629 |
+
os.remove(f)
|
630 |
+
st.success(f"Deleted group {group_name}!")
|
631 |
+
st.session_state.should_rerun = True
|
632 |
+
|
633 |
+
for f in files:
|
634 |
+
fname = os.path.basename(f)
|
635 |
+
ext = os.path.splitext(fname)[1].lower()
|
636 |
+
emoji = FILE_EMOJIS.get(ext.strip('.'), '')
|
637 |
+
ctime = datetime.fromtimestamp(os.path.getmtime(f)).strftime("%H:%M:%S")
|
638 |
+
st.write(f"{emoji} **{fname}** - {ctime}")
|
639 |
+
|
640 |
+
# 🎯 11. Main Application
|
641 |
+
def main():
|
642 |
+
st.sidebar.markdown("### 🚲BikeAI🏆 Multi-Agent Research")
|
643 |
+
|
644 |
+
# Add voice selector to sidebar
|
645 |
+
st.sidebar.markdown("### 🎤 Voice Settings")
|
646 |
+
selected_voice = st.sidebar.selectbox(
|
647 |
+
"Select TTS Voice:",
|
648 |
+
options=EDGE_TTS_VOICES,
|
649 |
+
index=EDGE_TTS_VOICES.index(st.session_state['tts_voice'])
|
650 |
+
)
|
651 |
+
|
652 |
+
# Add audio format selector to sidebar
|
653 |
+
st.sidebar.markdown("### 🔊 Audio Format")
|
654 |
+
selected_format = st.sidebar.radio(
|
655 |
+
"Choose Audio Format:",
|
656 |
+
options=["MP3", "WAV"],
|
657 |
+
index=0 # Default to MP3
|
658 |
+
)
|
659 |
+
|
660 |
+
# Update session state if voice or format changes
|
661 |
+
if selected_voice != st.session_state['tts_voice']:
|
662 |
+
st.session_state['tts_voice'] = selected_voice
|
663 |
+
st.rerun()
|
664 |
+
if selected_format.lower() != st.session_state['audio_format']:
|
665 |
+
st.session_state['audio_format'] = selected_format.lower()
|
666 |
+
st.rerun()
|
667 |
+
|
668 |
+
tab_main = st.radio("Action:",["🎤 Voice","📸 Media","🔍 ArXiv","📝 Editor"],horizontal=True)
|
669 |
+
|
670 |
+
mycomponent = components.declare_component("mycomponent", path="mycomponent")
|
671 |
+
val = mycomponent(my_input_value="Hello")
|
672 |
+
|
673 |
+
# Show input in a text box for editing if detected
|
674 |
+
if val:
|
675 |
+
val_stripped = val.replace('\\n', ' ')
|
676 |
+
edited_input = st.text_area("✏️ Edit Input:", value=val_stripped, height=100)
|
677 |
+
#edited_input = edited_input.replace('\n', ' ')
|
678 |
+
|
679 |
+
run_option = st.selectbox("Model:", ["Arxiv", "GPT-4o", "Claude-3.5"])
|
680 |
+
col1, col2 = st.columns(2)
|
681 |
+
with col1:
|
682 |
+
autorun = st.checkbox("⚙ AutoRun", value=True)
|
683 |
+
with col2:
|
684 |
+
full_audio = st.checkbox("📚FullAudio", value=False,
|
685 |
+
help="Generate full audio response")
|
686 |
+
|
687 |
+
input_changed = (val != st.session_state.old_val)
|
688 |
+
|
689 |
+
if autorun and input_changed:
|
690 |
+
st.session_state.old_val = val
|
691 |
+
st.session_state.last_query = edited_input # Store the last query for zip naming
|
692 |
+
if run_option == "Arxiv":
|
693 |
+
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
694 |
+
titles_summary=True, full_audio=full_audio)
|
695 |
+
else:
|
696 |
+
if run_option == "GPT-4o":
|
697 |
+
process_with_gpt(edited_input)
|
698 |
+
elif run_option == "Claude-3.5":
|
699 |
+
process_with_claude(edited_input)
|
700 |
+
else:
|
701 |
+
if st.button("▶ Run"):
|
702 |
+
st.session_state.old_val = val
|
703 |
+
st.session_state.last_query = edited_input # Store the last query for zip naming
|
704 |
+
if run_option == "Arxiv":
|
705 |
+
perform_ai_lookup(edited_input, vocal_summary=True, extended_refs=False,
|
706 |
+
titles_summary=True, full_audio=full_audio)
|
707 |
+
else:
|
708 |
+
if run_option == "GPT-4o":
|
709 |
+
process_with_gpt(edited_input)
|
710 |
+
elif run_option == "Claude-3.5":
|
711 |
+
process_with_claude(edited_input)
|
712 |
+
|
713 |
+
if tab_main == "🔍 ArXiv":
|
714 |
+
st.subheader("🔍 Query ArXiv")
|
715 |
+
q = st.text_input("🔍 Query:")
|
716 |
+
|
717 |
+
st.markdown("### 🎛 Options")
|
718 |
+
vocal_summary = st.checkbox("🎙ShortAudio", value=True)
|
719 |
+
extended_refs = st.checkbox("📜LongRefs", value=False)
|
720 |
+
titles_summary = st.checkbox("🔖TitlesOnly", value=True)
|
721 |
+
full_audio = st.checkbox("📚FullAudio", value=False,
|
722 |
+
help="Full audio of results")
|
723 |
+
full_transcript = st.checkbox("🧾FullTranscript", value=False,
|
724 |
+
help="Generate a full transcript file")
|
725 |
+
|
726 |
+
if q and st.button("🔍Run"):
|
727 |
+
st.session_state.last_query = q # Store the last query for zip naming
|
728 |
+
result = perform_ai_lookup(q, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
729 |
+
titles_summary=titles_summary, full_audio=full_audio)
|
730 |
+
if full_transcript:
|
731 |
+
save_full_transcript(q, result)
|
732 |
+
|
733 |
+
st.markdown("### Change Prompt & Re-Run")
|
734 |
+
q_new = st.text_input("🔄 Modify Query:")
|
735 |
+
if q_new and st.button("🔄 Re-Run with Modified Query"):
|
736 |
+
st.session_state.last_query = q_new # Update last query
|
737 |
+
result = perform_ai_lookup(q_new, vocal_summary=vocal_summary, extended_refs=extended_refs,
|
738 |
+
titles_summary=titles_summary, full_audio=full_audio)
|
739 |
+
if full_transcript:
|
740 |
+
save_full_transcript(q_new, result)
|
741 |
+
|
742 |
+
elif tab_main == "🎤 Voice":
|
743 |
+
st.subheader("🎤 Voice Input")
|
744 |
+
user_text = st.text_area("💬 Message:", height=100)
|
745 |
+
user_text = user_text.strip().replace('\n', ' ')
|
746 |
+
if st.button("📨 Send"):
|
747 |
+
process_with_gpt(user_text)
|
748 |
+
st.subheader("📜 Chat History")
|
749 |
+
t1,t2=st.tabs(["Claude History","GPT-4o History"])
|
750 |
+
with t1:
|
751 |
+
for c in st.session_state.chat_history:
|
752 |
+
st.write("**You:**", c["user"])
|
753 |
+
st.write("**Claude:**", c["claude"])
|
754 |
+
with t2:
|
755 |
+
for m in st.session_state.messages:
|
756 |
+
with st.chat_message(m["role"]):
|
757 |
+
st.markdown(m["content"])
|
758 |
+
|
759 |
+
elif tab_main == "📸 Media":
|
760 |
+
st.header("📸 Images & 🎥 Videos")
|
761 |
+
tabs = st.tabs(["🖼 Images", "🎥 Video"])
|
762 |
+
with tabs[0]:
|
763 |
+
imgs = glob.glob("*.png")+glob.glob("*.jpg")
|
764 |
+
if imgs:
|
765 |
+
c = st.slider("Cols",1,5,3)
|
766 |
+
cols = st.columns(c)
|
767 |
+
for i,f in enumerate(imgs):
|
768 |
+
with cols[i%c]:
|
769 |
+
st.image(Image.open(f),use_container_width=True)
|
770 |
+
if st.button(f"👀 Analyze {os.path.basename(f)}", key=f"analyze_{f}"):
|
771 |
+
a = process_image(f,"Describe this image.")
|
772 |
+
st.markdown(a)
|
773 |
+
else:
|
774 |
+
st.write("No images found.")
|
775 |
+
with tabs[1]:
|
776 |
+
vids = glob.glob("*.mp4")
|
777 |
+
if vids:
|
778 |
+
for v in vids:
|
779 |
+
with st.expander(f"🎥 {os.path.basename(v)}"):
|
780 |
+
st.video(v)
|
781 |
+
if st.button(f"Analyze {os.path.basename(v)}", key=f"analyze_{v}"):
|
782 |
+
a = process_video_with_gpt(v,"Describe video.")
|
783 |
+
st.markdown(a)
|
784 |
+
else:
|
785 |
+
st.write("No videos found.")
|
786 |
+
|
787 |
+
elif tab_main == "📝 Editor":
|
788 |
+
if getattr(st.session_state,'current_file',None):
|
789 |
+
st.subheader(f"Editing: {st.session_state.current_file}")
|
790 |
+
new_text = st.text_area("✏️ Content:", st.session_state.file_content, height=300)
|
791 |
+
if st.button("💾 Save"):
|
792 |
+
with open(st.session_state.current_file,'w',encoding='utf-8') as f:
|
793 |
+
f.write(new_text)
|
794 |
+
st.success("Updated!")
|
795 |
+
st.session_state.should_rerun = True
|
796 |
+
else:
|
797 |
+
st.write("Select a file from the sidebar to edit.")
|
798 |
+
|
799 |
+
# Load and display files in the sidebar
|
800 |
+
groups_sorted = load_files_for_sidebar()
|
801 |
+
display_file_manager_sidebar(groups_sorted)
|
802 |
+
|
803 |
+
if st.session_state.viewing_prefix and any(st.session_state.viewing_prefix == group for group, _ in groups_sorted):
|
804 |
+
st.write("---")
|
805 |
+
st.write(f"**Viewing Group:** {st.session_state.viewing_prefix}")
|
806 |
+
for group_name, files in groups_sorted:
|
807 |
+
if group_name == st.session_state.viewing_prefix:
|
808 |
+
for f in files:
|
809 |
+
fname = os.path.basename(f)
|
810 |
+
ext = os.path.splitext(fname)[1].lower().strip('.')
|
811 |
+
st.write(f"### {fname}")
|
812 |
+
if ext == "md":
|
813 |
+
content = open(f,'r',encoding='utf-8').read()
|
814 |
+
st.markdown(content)
|
815 |
+
elif ext == "mp3":
|
816 |
+
st.audio(f)
|
817 |
+
elif ext == "wav":
|
818 |
+
st.audio(f) # 🆕 Handle WAV files
|
819 |
+
else:
|
820 |
+
st.markdown(get_download_link(f), unsafe_allow_html=True)
|
821 |
+
break
|
822 |
+
if st.button("❌ Close"):
|
823 |
+
st.session_state.viewing_prefix = None
|
824 |
+
|
825 |
+
markdownPapers = """
|
826 |
+
|
827 |
+
# Levels of AGI
|
828 |
+
|
829 |
+
## 1. Performance (rows) x Generality (columns)
|
830 |
+
- **Narrow**
|
831 |
+
- *clearly scoped or set of tasks*
|
832 |
+
- **General**
|
833 |
+
- *wide range of non-physical tasks, including metacognitive abilities like learning new skills*
|
834 |
+
|
835 |
+
## 2. Levels of AGI
|
836 |
+
|
837 |
+
### 2.1 Level 0: No AI
|
838 |
+
- **Narrow Non-AI**
|
839 |
+
- Calculator software; compiler
|
840 |
+
- **General Non-AI**
|
841 |
+
- Human-in-the-loop computing, e.g., Amazon Mechanical Turk
|
842 |
+
|
843 |
+
### 2.2 Level 1: Emerging
|
844 |
+
*equal to or somewhat better than an unskilled human*
|
845 |
+
- **Emerging Narrow AI**
|
846 |
+
- GOFAI; simple rule-based systems
|
847 |
+
- Example: SHRDLU
|
848 |
+
- *Reference:* Winograd, T. (1971). **Procedures as a Representation for Data in a Computer Program for Understanding Natural Language**. MIT AI Technical Report. [Link](https://dspace.mit.edu/handle/1721.1/7095)
|
849 |
+
- **Emerging AGI**
|
850 |
+
- ChatGPT (OpenAI, 2023)
|
851 |
+
- Bard (Anil et al., 2023)
|
852 |
+
- *Reference:* Anil, R., et al. (2023). **Bard: Google’s AI Chatbot**. [arXiv](https://arxiv.org/abs/2303.12712)
|
853 |
+
- LLaMA 2 (Touvron et al., 2023)
|
854 |
+
- *Reference:* Touvron, H., et al. (2023). **LLaMA 2: Open and Efficient Foundation Language Models**. [arXiv](https://arxiv.org/abs/2307.09288)
|
855 |
+
|
856 |
+
### 2.3 Level 2: Competent
|
857 |
+
*at least 50th percentile of skilled adults*
|
858 |
+
- **Competent Narrow AI**
|
859 |
+
- Toxicity detectors such as Jigsaw
|
860 |
+
- *Reference:* Das, S., et al. (2022). **Toxicity Detection at Scale with Jigsaw**. [arXiv](https://arxiv.org/abs/2204.06905)
|
861 |
+
- Smart Speakers (Apple, Amazon, Google)
|
862 |
+
- VQA systems (PaLI)
|
863 |
+
- *Reference:* Chen, T., et al. (2023). **PaLI: Pathways Language and Image model**. [arXiv](https://arxiv.org/abs/2301.01298)
|
864 |
+
- Watson (IBM)
|
865 |
+
- SOTA LLMs for subsets of tasks
|
866 |
+
- **Competent AGI**
|
867 |
+
- Not yet achieved
|
868 |
+
|
869 |
+
### 2.4 Level 3: Expert
|
870 |
+
*at least 90th percentile of skilled adults*
|
871 |
+
- **Expert Narrow AI**
|
872 |
+
- Spelling & grammar checkers (Grammarly, 2023)
|
873 |
+
- Generative image models
|
874 |
+
- Example: Imagen
|
875 |
+
- *Reference:* Saharia, C., et al. (2022). **Imagen: Photorealistic Text-to-Image Diffusion Models**. [arXiv](https://arxiv.org/abs/2205.11487)
|
876 |
+
- Example: DALL·E 2
|
877 |
+
- *Reference:* Ramesh, A., et al. (2022). **Hierarchical Text-Conditional Image Generation with CLIP Latents**. [arXiv](https://arxiv.org/abs/2204.06125)
|
878 |
+
- **Expert AGI**
|
879 |
+
- Not yet achieved
|
880 |
+
|
881 |
+
### 2.5 Level 4: Virtuoso
|
882 |
+
*at least 99th percentile of skilled adults*
|
883 |
+
- **Virtuoso Narrow AI**
|
884 |
+
- Deep Blue
|
885 |
+
- *Reference:* Campbell, M., et al. (2002). **Deep Blue**. IBM Journal of Research and Development. [Link](https://research.ibm.com/publications/deep-blue)
|
886 |
+
- AlphaGo
|
887 |
+
- *Reference:* Silver, D., et al. (2016, 2017). **Mastering the Game of Go with Deep Neural Networks and Tree Search**. [Nature](https://www.nature.com/articles/nature16961)
|
888 |
+
- **Virtuoso AGI**
|
889 |
+
- Not yet achieved
|
890 |
+
|
891 |
+
### 2.6 Level 5: Superhuman
|
892 |
+
*outperforms 100% of humans*
|
893 |
+
- **Superhuman Narrow AI**
|
894 |
+
- AlphaFold
|
895 |
+
- *Reference:* Jumper, J., et al. (2021). **Highly Accurate Protein Structure Prediction with AlphaFold**. [Nature](https://www.nature.com/articles/s41586-021-03819-2)
|
896 |
+
- AlphaZero
|
897 |
+
- *Reference:* Silver, D., et al. (2018). **A General Reinforcement Learning Algorithm that Masters Chess, Shogi, and Go through Self-Play**. [Science](https://www.science.org/doi/10.1126/science.aar6404)
|
898 |
+
- StockFish
|
899 |
+
- *Reference:* Stockfish (2023). **Stockfish Chess Engine**. [Website](https://stockfishchess.org)
|
900 |
+
- **Artificial Superintelligence (ASI)**
|
901 |
+
- Not yet achieved
|
902 |
+
|
903 |
+
|
904 |
+
# 🧬 Innovative Architecture of AlphaFold2: A Hybrid System
|
905 |
+
|
906 |
+
## 1. 🔢 Input Sequence
|
907 |
+
- The process starts with an **input sequence** (protein sequence).
|
908 |
+
|
909 |
+
## 2. 🗄️ Database Searches
|
910 |
+
- **Genetic database search** 🔍
|
911 |
+
- Searches genetic databases to retrieve related sequences.
|
912 |
+
- **Structure database search** 🔍
|
913 |
+
- Searches structural databases for template structures.
|
914 |
+
- **Pairing** 🤝
|
915 |
+
- Aligns sequences and structures for further analysis.
|
916 |
+
|
917 |
+
## 3. 🧩 MSA (Multiple Sequence Alignment)
|
918 |
+
- **MSA representation** 📊 (r,c)
|
919 |
+
- Representation of multiple aligned sequences used as input.
|
920 |
+
|
921 |
+
## 4. 📑 Templates
|
922 |
+
- Template structures are paired to assist the model.
|
923 |
+
|
924 |
+
## 5. 🔄 Evoformer (48 blocks)
|
925 |
+
- A **deep learning module** that refines representations:
|
926 |
+
- **MSA representation** 🧱
|
927 |
+
- **Pair representation** 🧱 (r,c)
|
928 |
+
|
929 |
+
## 6. 🧱 Structure Module (8 blocks)
|
930 |
+
- Converts the representations into:
|
931 |
+
- **Single representation** (r,c)
|
932 |
+
- **Pair representation** (r,c)
|
933 |
+
|
934 |
+
## 7. 🧬 3D Structure Prediction
|
935 |
+
- The structure module predicts the **3D protein structure**.
|
936 |
+
- **Confidence levels**:
|
937 |
+
- 🔵 *High confidence*
|
938 |
+
- 🟠 *Low confidence*
|
939 |
+
|
940 |
+
## 8. ♻️ Recycling (Three Times)
|
941 |
+
- The model **recycles** its output up to three times to refine the prediction.
|
942 |
+
|
943 |
+
## 9. 📚 Reference
|
944 |
+
**Jumper, J., et al. (2021).** Highly Accurate Protein Structure Prediction with AlphaFold. *Nature.*
|
945 |
+
🔗 [Nature Publication Link](https://www.nature.com/articles/s41586-021-03819-2)
|
946 |
+
|
947 |
+
"""
|
948 |
+
st.sidebar.markdown(markdownPapers)
|
949 |
+
|
950 |
+
if st.session_state.should_rerun:
|
951 |
+
st.session_state.should_rerun = False
|
952 |
+
st.rerun()
|
953 |
+
|
954 |
+
if __name__=="__main__":
|
955 |
+
main()
|