Spaces:
Build error
Build error
import argparse | |
import os | |
from pathlib import Path | |
import gradio as gr | |
#import torch | |
from functions.core_functions1 import clear_gpu_cache, load_model, run_tts, load_params_tts, process_srt_and_generate_audio, convert_voice | |
# preprocess_dataset, load_params, train_model, optimize_model, | |
from functions.logging_utils import remove_log_file, read_logs | |
from functions.slice_utils import open_slice, close_slice, kill_process | |
from utils.formatter import format_audio_list | |
from utils.gpt_train import train_gpt | |
import traceback | |
import shutil | |
from tools.i18n.i18n import I18nAuto | |
from tools import my_utils | |
from multiprocessing import cpu_count | |
from subprocess import Popen | |
from config import python_exec, is_share, webui_port_main | |
if __name__ == "__main__": | |
# 清除旧的日志文件 | |
remove_log_file("logs/main.log") | |
parser = argparse.ArgumentParser( | |
description="""XTTS fine-tuning demo\n\n""" | |
""" | |
Example runs: | |
python3 TTS/demos/xtts_ft_demo/xtts_demo.py --port | |
""", | |
formatter_class=argparse.RawTextHelpFormatter, | |
) | |
parser.add_argument( | |
"--port", | |
type=int, | |
help="Port to run the gradio demo. Default: 5003", | |
default=5003, | |
) | |
parser.add_argument( | |
"--out_path", | |
type=str, | |
help="Output path (where data and checkpoints will be saved) Default: output/", | |
default=str(Path.cwd() / "finetune_models"), | |
) | |
parser.add_argument( | |
"--num_epochs", | |
type=int, | |
help="Number of epochs to train. Default: 6", | |
default=6, | |
) | |
parser.add_argument( | |
"--batch_size", | |
type=int, | |
help="Batch size. Default: 2", | |
default=2, | |
) | |
parser.add_argument( | |
"--grad_acumm", | |
type=int, | |
help="Grad accumulation steps. Default: 1", | |
default=1, | |
) | |
parser.add_argument( | |
"--max_audio_length", | |
type=int, | |
help="Max permitted audio size in seconds. Default: 11", | |
default=11, | |
) | |
args = parser.parse_args() | |
i18n = I18nAuto() | |
n_cpu=cpu_count() | |
''' | |
ngpu = torch.cuda.device_count() | |
gpu_infos = [] | |
mem = [] | |
if_gpu_ok = False | |
''' | |
with gr.Blocks() as demo: | |
with gr.Tab("0 - Audio Slicing"): | |
gr.Markdown(value=i18n("0b-语音切分工具")) | |
with gr.Row(): | |
slice_inp_path = gr.Textbox(label=i18n("音频自动切分输入路径,可文件可文件夹"), value="") | |
slice_opt_root = gr.Textbox(label=i18n("切分后的子音频的输出根目录"), value="output/slicer_opt") | |
threshold = gr.Textbox(label=i18n("threshold:音量小于这个值视作静音的备选切割点"), value="-34") | |
min_length = gr.Textbox(label=i18n("min_length:每段最小多长,如果第一段太短一直和后面段连起来直到超过这个值"), value="4000") | |
min_interval = gr.Textbox(label=i18n("min_interval:最短切割间隔"), value="300") | |
hop_size = gr.Textbox(label=i18n("hop_size:怎么算音量曲线,越小精度越大计算量越高(不是精度越大效果越好)"), value="10") | |
max_sil_kept = gr.Textbox(label=i18n("max_sil_kept:切完后静音最多留多长"), value="500") | |
with gr.Row(): | |
open_slicer_button = gr.Button(i18n("开启语音切割"), variant="primary", visible=True) | |
close_slicer_button = gr.Button(i18n("终止语音切割"), variant="primary", visible=False) | |
_max = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("max:归一化后最大值多少"), value=0.9, interactive=True) | |
alpha = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("alpha_mix:混多少比例归一化后音频进来"), value=0.25, interactive=True) | |
n_process = gr.Slider(minimum=1, maximum=n_cpu, step=1, label=i18n("切割使用的进程数"), value=4, interactive=True) | |
slicer_info = gr.Textbox(label=i18n("语音切割进程输出信息")) | |
open_slicer_button.click(open_slice, [slice_inp_path, slice_opt_root, threshold, min_length, min_interval, hop_size, max_sil_kept, _max, alpha, n_process], [slicer_info, open_slicer_button, close_slicer_button]) | |
close_slicer_button.click(close_slice, [], [slicer_info, open_slicer_button, close_slicer_button]) | |
with gr.Tab("1 - Data processing"): | |
out_path = gr.Textbox(label="Output path (where data and checkpoints will be saved):", value=args.out_path) | |
upload_file = gr.File(file_count="multiple", label="Select here the audio files that you want to use for XTTS trainining (Supported formats: wav, mp3, and flac)") | |
folder_path = gr.Textbox(label="Or input the path of a folder containing audio files") | |
whisper_model = gr.Dropdown(label="Whisper Model", value="large-v3", choices=["large-v3", "large-v2", "large", "medium", "small"]) | |
lang = gr.Dropdown(label="Dataset Language", value="en", choices=["en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh", "hu", "ko", "ja"]) | |
progress_data = gr.Label(label="Progress:") | |
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset") | |
def get_audio_files_from_folder(folder_path): | |
audio_files = [] | |
for root, dirs, files in os.walk(folder_path): | |
for file in files: | |
if file.endswith(".wav") or file.endswith(".mp3") or file.endswith(".flac") or file.endswith(".m4a") or file.endswith(".webm"): | |
audio_files.append(os.path.join(root, file)) | |
return audio_files | |
def preprocess_dataset(audio_path, audio_folder, language, whisper_model, out_path, train_csv, eval_csv, progress=gr.Progress(track_tqdm=True)): | |
clear_gpu_cache() | |
train_csv = "" | |
eval_csv = "" | |
out_path = os.path.join(out_path, "dataset") | |
os.makedirs(out_path, exist_ok=True) | |
# 检测输入是单个文件、多个文件还是文件夹 | |
if audio_path is not None and audio_path != []: | |
# 处理单个文件或多个文件 | |
try: | |
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress) | |
except: | |
traceback.print_exc() | |
error = traceback.format_exc() | |
return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", "" | |
elif audio_folder is not None: | |
# 处理文件夹 | |
audio_files = get_audio_files_from_folder(audio_folder) | |
try: | |
train_meta, eval_meta, audio_total_size = format_audio_list(audio_files, whisper_model=whisper_model, target_language=language, out_path=out_path, gradio_progress=progress) | |
except: | |
traceback.print_exc() | |
error = traceback.format_exc() | |
return f"The data processing was interrupted due to an error! Please check the console to verify the full error message! \n Error summary: {error}", "", "" | |
else: | |
return "You should provide either audio files or a folder containing audio files!", "", "" | |
# if audio total len is less than 2 minutes raise an error | |
if audio_total_size < 120: | |
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!" | |
print(message) | |
return message, "", "" | |
print("Dataset Processed!") | |
return "Dataset Processed!", train_meta, eval_meta | |
#prompt_compute_btn.click(preprocess_dataset, inputs=[upload_file, upload_folder, lang, whisper_model, out_path, train_csv, eval_csv], outputs=[progress_data, train_csv, eval_csv]) | |
''' | |
def preprocess_dataset(audio_path, language, whisper_model, out_path,train_csv,eval_csv, progress=gr.Progress(track_tqdm=True)): | |
clear_gpu_cache() | |
train_csv = "" | |
eval_csv = "" | |
out_path = os.path.join(out_path, "dataset") | |
os.makedirs(out_path, exist_ok=True) | |
if audio_path is None: | |
return "You should provide one or multiple audio files! If you provided it, probably the upload of the files is not finished yet!", "", "" | |
else: | |
try: | |
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, whisper_model = whisper_model, target_language=language, out_path=out_path, gradio_progress=progress) | |
except: | |
traceback.print_exc() | |
error = traceback.format_exc() | |
return f"The data processing was interrupted due an error !! Please check the console to verify the full error message! \n Error summary: {error}", "", "" | |
# clear_gpu_cache() | |
# if audio total len is less than 2 minutes raise an error | |
if audio_total_size < 120: | |
message = "The sum of the duration of the audios that you provided should be at least 2 minutes!" | |
print(message) | |
return message, "", "" | |
print("Dataset Processed!") | |
return "Dataset Processed!", train_meta, eval_meta | |
''' | |
with gr.Tab("2 - Fine-tuning XTTS Encoder"): | |
load_params_btn = gr.Button(value="Load Params from output folder") | |
version = gr.Dropdown( | |
label="XTTS base version", | |
value="v2.0.2", | |
choices=[ | |
"v2.0.3", | |
"v2.0.2", | |
"v2.0.1", | |
"v2.0.0", | |
"main" | |
], | |
) | |
train_csv = gr.Textbox( | |
label="Train CSV:", | |
) | |
eval_csv = gr.Textbox( | |
label="Eval CSV:", | |
) | |
custom_model = gr.Textbox( | |
label="(Optional) Custom model.pth file , leave blank if you want to use the base file.", | |
value="", | |
) | |
num_epochs = gr.Slider( | |
label="Number of epochs:", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=args.num_epochs, | |
) | |
batch_size = gr.Slider( | |
label="Batch size:", | |
minimum=2, | |
maximum=512, | |
step=1, | |
value=args.batch_size, | |
) | |
grad_acumm = gr.Slider( | |
label="Grad accumulation steps:", | |
minimum=2, | |
maximum=128, | |
step=1, | |
value=args.grad_acumm, | |
) | |
max_audio_length = gr.Slider( | |
label="Max permitted audio size in seconds:", | |
minimum=2, | |
maximum=20, | |
step=1, | |
value=args.max_audio_length, | |
) | |
clear_train_data = gr.Dropdown( | |
label="Clear train data, you will delete selected folder, after optimizing", | |
value="run", | |
choices=[ | |
"none", | |
"run", | |
"dataset", | |
"all" | |
]) | |
progress_train = gr.Label( | |
label="Progress:" | |
) | |
# demo.load(read_logs, None, logs_tts_train, every=1) | |
train_btn = gr.Button(value="Step 2 - Run the training") | |
optimize_model_btn = gr.Button(value="Step 2.5 - Optimize the model") | |
def train_model(custom_model,version,language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length): | |
clear_gpu_cache() | |
run_dir = Path(output_path) / "run" | |
# # Remove train dir | |
if run_dir.exists(): | |
os.remove(run_dir) | |
# Check if the dataset language matches the language you specified | |
lang_file_path = Path(output_path) / "dataset" / "lang.txt" | |
# Check if lang.txt already exists and contains a different language | |
current_language = None | |
if lang_file_path.exists(): | |
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file: | |
current_language = existing_lang_file.read().strip() | |
if current_language != language: | |
print("The language that was prepared for the dataset does not match the specified language. Change the language to the one specified in the dataset") | |
language = current_language | |
if not train_csv or not eval_csv: | |
return "You need to run the data processing step or manually set `Train CSV` and `Eval CSV` fields !", "", "", "", "" | |
try: | |
# convert seconds to waveform frames | |
max_audio_length = int(max_audio_length * 22050) | |
speaker_xtts_path,config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(custom_model,version,language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length) | |
except: | |
traceback.print_exc() | |
error = traceback.format_exc() | |
return f"The training was interrupted due an error !! Please check the console to check the full error message! \n Error summary: {error}", "", "", "", "" | |
# copy original files to avoid parameters changes issues | |
# os.system(f"cp {config_path} {exp_path}") | |
# os.system(f"cp {vocab_file} {exp_path}") | |
ready_dir = Path(output_path) / "ready" | |
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth") | |
shutil.copy(ft_xtts_checkpoint, ready_dir / "unoptimize_model.pth") | |
# os.remove(ft_xtts_checkpoint) | |
ft_xtts_checkpoint = os.path.join(ready_dir, "unoptimize_model.pth") | |
# Reference | |
# Move reference audio to output folder and rename it | |
speaker_reference_path = Path(speaker_wav) | |
speaker_reference_new_path = ready_dir / "reference.wav" | |
shutil.copy(speaker_reference_path, speaker_reference_new_path) | |
print("Model training done!") | |
# clear_gpu_cache() | |
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint,speaker_xtts_path, speaker_reference_new_path | |
def optimize_model(out_path, clear_train_data): | |
# print(out_path) | |
out_path = Path(out_path) # Ensure that out_path is a Path object. | |
ready_dir = out_path / "ready" | |
run_dir = out_path / "run" | |
dataset_dir = out_path / "dataset" | |
# Clear specified training data directories. | |
if clear_train_data in {"run", "all"} and run_dir.exists(): | |
try: | |
shutil.rmtree(run_dir) | |
except PermissionError as e: | |
print(f"An error occurred while deleting {run_dir}: {e}") | |
if clear_train_data in {"dataset", "all"} and dataset_dir.exists(): | |
try: | |
shutil.rmtree(dataset_dir) | |
except PermissionError as e: | |
print(f"An error occurred while deleting {dataset_dir}: {e}") | |
# Get full path to model | |
model_path = ready_dir / "unoptimize_model.pth" | |
if not model_path.is_file(): | |
return "Unoptimized model not found in ready folder", "" | |
# Load the checkpoint and remove unnecessary parts. | |
checkpoint = torch.load(model_path, map_location=torch.device("cpu")) | |
del checkpoint["optimizer"] | |
for key in list(checkpoint["model"].keys()): | |
if "dvae" in key: | |
del checkpoint["model"][key] | |
# Make sure out_path is a Path object or convert it to Path | |
os.remove(model_path) | |
# Save the optimized model. | |
optimized_model_file_name="model.pth" | |
optimized_model=ready_dir/optimized_model_file_name | |
torch.save(checkpoint, optimized_model) | |
ft_xtts_checkpoint=str(optimized_model) | |
clear_gpu_cache() | |
return f"Model optimized and saved at {ft_xtts_checkpoint}!", ft_xtts_checkpoint | |
def load_params(out_path): | |
path_output = Path(out_path) | |
dataset_path = path_output / "dataset" | |
if not dataset_path.exists(): | |
return "The output folder does not exist!", "", "" | |
eval_train = dataset_path / "metadata_train.csv" | |
eval_csv = dataset_path / "metadata_eval.csv" | |
# Write the target language to lang.txt in the output directory | |
lang_file_path = dataset_path / "lang.txt" | |
# Check if lang.txt already exists and contains a different language | |
current_language = None | |
if os.path.exists(lang_file_path): | |
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file: | |
current_language = existing_lang_file.read().strip() | |
clear_gpu_cache() | |
print(current_language) | |
return "The data has been updated", eval_train, eval_csv, current_language | |
with gr.Tab("3 - Inference"): | |
with gr.Row(): | |
with gr.Column() as col1: | |
load_params_tts_btn = gr.Button(value="Load params for TTS from output folder") | |
xtts_checkpoint = gr.Textbox( | |
label="XTTS checkpoint path:", | |
value="", | |
) | |
xtts_config = gr.Textbox( | |
label="XTTS config path:", | |
value="", | |
) | |
xtts_vocab = gr.Textbox( | |
label="XTTS vocab path:", | |
value="", | |
) | |
xtts_speaker = gr.Textbox( | |
label="XTTS speaker path:", | |
value="", | |
) | |
progress_load = gr.Label( | |
label="Progress:" | |
) | |
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model") | |
with gr.Column() as col2: | |
speaker_reference_audio = gr.Textbox( | |
label="Speaker reference audio:", | |
value="", | |
) | |
tts_language = gr.Dropdown( | |
label="Language", | |
value="en", | |
choices=[ | |
"en", | |
"es", | |
"fr", | |
"de", | |
"it", | |
"pt", | |
"pl", | |
"tr", | |
"ru", | |
"nl", | |
"cs", | |
"ar", | |
"zh", | |
"hu", | |
"ko", | |
"ja", | |
] | |
) | |
tts_text = gr.Textbox( | |
label="Input Text.", | |
value="This model sounds really good and above all, it's reasonably fast.", | |
) | |
with gr.Accordion("Advanced settings", open=False) as acr: | |
temperature = gr.Slider( | |
label="temperature", | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.75, | |
) | |
length_penalty = gr.Slider( | |
label="length_penalty", | |
minimum=-10.0, | |
maximum=10.0, | |
step=0.5, | |
value=1, | |
) | |
repetition_penalty = gr.Slider( | |
label="repetition penalty", | |
minimum=1, | |
maximum=10, | |
step=0.5, | |
value=5, | |
) | |
top_k = gr.Slider( | |
label="top_k", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=50, | |
) | |
top_p = gr.Slider( | |
label="top_p", | |
minimum=0, | |
maximum=1, | |
step=0.05, | |
value=0.85, | |
) | |
speed = gr.Slider( | |
label="speed", | |
minimum=0.2, | |
maximum=4.0, | |
step=0.05, | |
value=1.0, | |
) | |
sentence_split = gr.Checkbox( | |
label="Enable text splitting", | |
value=True, | |
) | |
use_config = gr.Checkbox( | |
label="Use Inference settings from config, if disabled use the settings above", | |
value=False, | |
) | |
tts_btn = gr.Button(value="Step 4 - Inference") | |
with gr.Column() as col3: | |
progress_gen = gr.Label( | |
label="Progress:" | |
) | |
tts_output_audio = gr.Audio(label="Generated Audio.") | |
reference_audio = gr.Audio(label="Reference audio used.") | |
with gr.Column() as col4: | |
srt_upload = gr.File(label="Upload SRT File") | |
generate_srt_audio_btn = gr.Button(value="Generate Audio from SRT") | |
srt_output_audio = gr.Audio(label="Combined Audio from SRT") | |
error_message = gr.Textbox(label="Error Message", visible=False) # 错误消息组件,默认不显示 | |
generate_srt_audio_btn.click( | |
fn=process_srt_and_generate_audio, | |
inputs=[ | |
srt_upload, | |
tts_language, | |
speaker_reference_audio, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
top_k, | |
top_p, | |
speed, | |
sentence_split, | |
use_config | |
], | |
outputs=[srt_output_audio] | |
) | |
prompt_compute_btn.click( | |
fn=preprocess_dataset, | |
inputs=[ | |
upload_file, | |
lang, | |
whisper_model, | |
out_path, | |
train_csv, | |
eval_csv | |
], | |
outputs=[ | |
progress_data, | |
train_csv, | |
eval_csv, | |
], | |
) | |
load_params_btn.click( | |
fn=load_params, | |
inputs=[out_path], | |
outputs=[ | |
progress_train, | |
train_csv, | |
eval_csv, | |
lang | |
] | |
) | |
train_btn.click( | |
fn=train_model, | |
inputs=[ | |
custom_model, | |
version, | |
lang, | |
train_csv, | |
eval_csv, | |
num_epochs, | |
batch_size, | |
grad_acumm, | |
out_path, | |
max_audio_length, | |
], | |
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint,xtts_speaker, speaker_reference_audio], | |
) | |
optimize_model_btn.click( | |
fn=optimize_model, | |
inputs=[ | |
out_path, | |
clear_train_data | |
], | |
outputs=[progress_train,xtts_checkpoint], | |
) | |
load_btn.click( | |
fn=load_model, | |
inputs=[ | |
xtts_checkpoint, | |
xtts_config, | |
xtts_vocab, | |
xtts_speaker | |
], | |
outputs=[progress_load], | |
) | |
tts_btn.click( | |
fn=run_tts, | |
inputs=[ | |
tts_language, | |
tts_text, | |
speaker_reference_audio, | |
temperature, | |
length_penalty, | |
repetition_penalty, | |
top_k, | |
top_p, | |
speed, | |
sentence_split, | |
use_config | |
], | |
outputs=[progress_gen, tts_output_audio, reference_audio], | |
) | |
load_params_tts_btn.click( | |
fn=load_params_tts, | |
inputs=[ | |
out_path, | |
version | |
], | |
outputs=[progress_load,xtts_checkpoint,xtts_config,xtts_vocab,xtts_speaker,speaker_reference_audio], | |
) | |
with gr.Tab("4 - Voice conversion"): | |
with gr.Column() as col0: | |
gr.Markdown("## OpenVoice Conversion Tool") | |
voice_convert_seed = gr.File(label="Upload Reference Speaker Audio being generated") | |
#pitch_shift_slider = gr.Slider(minimum=-12, maximum=12, step=1, value=0, label="Pitch Shift (Semitones)") | |
audio_to_convert = gr.Textbox( | |
label="Input the to-be-convert audio location", | |
value="", | |
) | |
convert_button = gr.Button("Convert Voice") | |
converted_audio = gr.Audio(label="Converted Audio") | |
convert_button.click( | |
convert_voice, | |
inputs=[voice_convert_seed, audio_to_convert], #, pitch_shift_slider], | |
outputs=[converted_audio] | |
) | |
with gr.Tab("5 - Logs"): | |
# 添加一个按钮来读取日志 | |
read_logs_btn = gr.Button("Read Logs") | |
log_output = gr.Textbox(label="Log Output") | |
read_logs_btn.click(fn=read_logs, inputs=None, outputs=log_output) | |
demo.launch( | |
#share=False, | |
share=True, | |
debug=False, | |
server_port=args.port, | |
#server_name="localhost" | |
server_name="0.0.0.0" | |
) |