xtts_awesome / utils /formatter.py
awesome-paulw's picture
Upload folder using huggingface_hub
1207342 verified
raw
history blame
10.2 kB
import os
import gc
import torchaudio
import pandas
from faster_whisper import WhisperModel
from glob import glob
from tqdm import tqdm
# from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners
# Add support for JA train
from utils.tokenizer import multilingual_cleaners
import torch
import torchaudio
# torch.set_num_threads(1)
torch.set_num_threads(16)
import os
audio_types = (".wav", ".mp3", ".flac")
def find_latest_best_model(folder_path):
search_path = os.path.join(folder_path, '**', 'best_model.pth')
files = glob(search_path, recursive=True)
latest_file = max(files, key=os.path.getctime, default=None)
return latest_file
def list_audios(basePath, contains=None):
# return the set of files that are valid
return list_files(basePath, validExts=audio_types, contains=contains)
def list_files(basePath, validExts=None, contains=None):
# loop over the directory structure
for (rootDir, dirNames, filenames) in os.walk(basePath):
# loop over the filenames in the current directory
for filename in filenames:
# if the contains string is not none and the filename does not contain
# the supplied string, then ignore the file
if contains is not None and filename.find(contains) == -1:
continue
# determine the file extension of the current file
ext = filename[filename.rfind("."):].lower()
# check to see if the file is an audio and should be processed
if validExts is None or ext.endswith(validExts):
# construct the path to the audio and yield it
audioPath = os.path.join(rootDir, filename)
yield audioPath
def format_audio_list(audio_files, target_language="en", whisper_model = "large-v3", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None):
audio_total_size = 0
# make sure that ooutput file exists
os.makedirs(out_path, exist_ok=True)
# Write the target language to lang.txt in the output directory
lang_file_path = os.path.join(out_path, "lang.txt")
# Check if lang.txt already exists and contains a different language
current_language = None
if os.path.exists(lang_file_path):
with open(lang_file_path, 'r', encoding='utf-8') as existing_lang_file:
current_language = existing_lang_file.read().strip()
if current_language != target_language:
# Only update lang.txt if target language is different from current language
with open(lang_file_path, 'w', encoding='utf-8') as lang_file:
lang_file.write(target_language + '\n')
print("Warning, existing language does not match target language. Updated lang.txt with target language.")
else:
print("Existing language matches target language")
# Loading Whisper
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading Whisper Model!")
asr_model = WhisperModel(whisper_model, device=device, compute_type="float16")
metadata = {"audio_file": [], "text": [], "speaker_name": []}
existing_metadata = {'train': None, 'eval': None}
train_metadata_path = os.path.join(out_path, "metadata_train.csv")
eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
if os.path.exists(train_metadata_path):
existing_metadata['train'] = pandas.read_csv(train_metadata_path,sep="|")
print("Existing training metadata found and loaded.")
if os.path.exists(eval_metadata_path):
existing_metadata['eval'] = pandas.read_csv(eval_metadata_path, sep="|")
print("Existing evaluation metadata found and loaded.")
if gradio_progress is not None:
tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...")
else:
tqdm_object = tqdm(audio_files)
for audio_path in tqdm_object:
audio_file_name_without_ext, _ = os.path.splitext(os.path.basename(audio_path))
prefix_check = f"wavs/{audio_file_name_without_ext}_"
# Check both training and evaluation metadata for an entry that starts with the file name.
skip_processing = False
for key in ['train', 'eval']:
if existing_metadata[key] is not None:
mask = existing_metadata[key]['audio_file'].str.startswith(prefix_check)
if mask.any():
print(f"Segments from {audio_file_name_without_ext} have been previously processed; skipping...")
skip_processing = True
break
# If we found that we've already processed this file before, continue to next iteration.
if skip_processing:
continue
wav, sr = torchaudio.load(audio_path)
# stereo to mono if needed
if wav.size(0) != 1:
wav = torch.mean(wav, dim=0, keepdim=True)
wav = wav.squeeze()
audio_total_size += (wav.size(-1) / sr)
segments, _ = asr_model.transcribe(audio_path,vad_filter=True, word_timestamps=True, language=target_language)
segments = list(segments)
# print(segments)
i = 0
sentence = ""
sentence_start = None
first_word = True
# added all segments words in a unique list
words_list = []
for _, segment in enumerate(segments):
words = list(segment.words)
words_list.extend(words)
# process each word
for word_idx, word in enumerate(words_list):
if first_word:
sentence_start = word.start
# If it is the first sentence, add buffer or get the begining of the file
if word_idx == 0:
sentence_start = max(sentence_start - buffer, 0) # Add buffer to the sentence start
else:
# get previous sentence end
previous_word_end = words_list[word_idx - 1].end
# add buffer or get the silence midle between the previous sentence and the current one
sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start)/2)
sentence = word.word
first_word = False
else:
sentence += word.word
if word.word[-1] in ["!", "。",".","?"]:
sentence = sentence[1:]
# Expand number and abbreviations plus normalization
sentence = multilingual_cleaners(sentence, target_language)
audio_file_name, _ = os.path.splitext(os.path.basename(audio_path))
audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav"
# Check for the next word's existence
if word_idx + 1 < len(words_list):
next_word_start = words_list[word_idx + 1].start
else:
# If don't have more words it means that it is the last sentence then use the audio len as next word start
next_word_start = (wav.shape[0] - 1) / sr
# Average the current word end and next word start
word_end = min((word.end + next_word_start) / 2, word.end + buffer)
absoulte_path = os.path.join(out_path, audio_file)
os.makedirs(os.path.dirname(absoulte_path), exist_ok=True)
i += 1
first_word = True
audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0)
# if the audio is too short ignore it (i.e < 0.33 seconds)
if audio.size(-1) >= sr/3:
torchaudio.save(absoulte_path,
audio,
sr
)
else:
continue
metadata["audio_file"].append(audio_file)
metadata["text"].append(sentence)
metadata["speaker_name"].append(speaker_name)
# df = pandas.DataFrame(metadata)
# df = df.sample(frac=1)
# num_val_samples = int(len(df)*eval_percentage)
# df_eval = df[:num_val_samples]
# df_train = df[num_val_samples:]
# df_train = df_train.sort_values('audio_file')
# train_metadata_path = os.path.join(out_path, "metadata_train.csv")
# df_train.to_csv(train_metadata_path, sep="|", index=False)
# eval_metadata_path = os.path.join(out_path, "metadata_eval.csv")
# df_eval = df_eval.sort_values('audio_file')
# df_eval.to_csv(eval_metadata_path, sep="|", index=False)
# # deallocate VRAM and RAM
# del asr_model, df_train, df_eval, df, metadata
# gc.collect()
if os.path.exists(train_metadata_path) and os.path.exists(eval_metadata_path):
existing_train_df = existing_metadata['train']
existing_eval_df = existing_metadata['eval']
audio_total_size = 121
else:
existing_train_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])
existing_eval_df = pandas.DataFrame(columns=["audio_file", "text", "speaker_name"])
new_data_df = pandas.DataFrame(metadata)
combined_train_df = pandas.concat([existing_train_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)
combined_eval_df = pandas.concat([existing_eval_df, new_data_df], ignore_index=True).drop_duplicates().reset_index(drop=True)
combined_train_df_shuffled = combined_train_df.sample(frac=1)
num_val_samples = int(len(combined_train_df_shuffled) * eval_percentage)
final_eval_set = combined_train_df_shuffled[:num_val_samples]
final_training_set = combined_train_df_shuffled[num_val_samples:]
final_training_set.sort_values('audio_file').to_csv(train_metadata_path, sep='|', index=False)
final_eval_set.sort_values('audio_file').to_csv(eval_metadata_path, sep='|', index=False)
# deallocate VRAM and RAM
del asr_model, final_eval_set, final_training_set, new_data_df, existing_metadata
gc.collect()
return train_metadata_path, eval_metadata_path, audio_total_size