Spaces:
Sleeping
Sleeping
huntingcarlisle
commited on
Commit
·
cd6c769
1
Parent(s):
a758727
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import requests
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
# from IPython.display import display
|
6 |
import base64
|
|
|
|
|
|
|
7 |
|
8 |
# helper decoder
|
9 |
def decode_base64_image(image_string):
|
@@ -19,66 +24,162 @@ def display_image(image=None,width=500,height=500):
|
|
19 |
# API Gateway endpoint URL
|
20 |
api_url = 'https://a02q342s5b.execute-api.us-east-2.amazonaws.com/reinvent-demo-inf2-sm-20231114'
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
# ===========
|
24 |
-
# Define Streamlit UI elements
|
25 |
-
st.title('Stable Diffusion XL with Refiner Image Generation')
|
26 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
seed = st.number_input("Random seed", value=555, placeholder="Type a number...", help="set to same value to generate same image, if other inputs are the same, change to generate a different image for same inputs")
|
36 |
-
# seed = 555
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
min_value=1,
|
40 |
max_value=100,
|
41 |
-
value=
|
42 |
-
|
43 |
-
|
44 |
-
denoising_start = st.slider("Denoising Start",
|
45 |
-
min_value=0.0,
|
46 |
-
max_value=1.0,
|
47 |
-
value=0.8,
|
48 |
-
help="when to stop modifying the overall image and start refining the details")
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if st.button('Generate Image'):
|
53 |
-
with st.spinner(f'Generating Image with {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}...'):
|
54 |
-
# ===============
|
55 |
-
# Example input data
|
56 |
-
prompt_input = {
|
57 |
-
"prompt": prompt,
|
58 |
-
"parameters": {
|
59 |
-
"num_inference_steps": num_inference_steps,
|
60 |
-
"seed": seed,
|
61 |
-
"negative_prompt": negative_prompt
|
62 |
-
# "denoising_start": denoising_start
|
63 |
-
}
|
64 |
-
}
|
65 |
-
|
66 |
-
# Make API request
|
67 |
-
response = requests.post(api_url, json=prompt_input)
|
68 |
-
|
69 |
-
# Process and display the response
|
70 |
-
if response.status_code == 200:
|
71 |
-
result = response.json()
|
72 |
-
# st.success(f"Prediction result: {result}")
|
73 |
-
image = display_image(decode_base64_image(result["generated_images"][0]))
|
74 |
-
st.header("SDXL Base + Refiner")
|
75 |
-
st.image(image,
|
76 |
-
caption=f"SDXL Base + Refiner, {num_inference_steps} iterations, beginning to refine around iteration {int(num_inference_steps * denoising_start)}")
|
77 |
-
else:
|
78 |
-
st.error(f"Error: {response.text}")
|
79 |
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
-
|
|
|
1 |
import streamlit as st
|
2 |
+
# Set the page layout to 'wide'
|
3 |
+
st.set_page_config(layout="wide")
|
4 |
import requests
|
5 |
from PIL import Image
|
6 |
from io import BytesIO
|
7 |
# from IPython.display import display
|
8 |
import base64
|
9 |
+
import time
|
10 |
+
|
11 |
+
|
12 |
|
13 |
# helper decoder
|
14 |
def decode_base64_image(image_string):
|
|
|
24 |
# API Gateway endpoint URL
|
25 |
api_url = 'https://a02q342s5b.execute-api.us-east-2.amazonaws.com/reinvent-demo-inf2-sm-20231114'
|
26 |
|
27 |
+
# Define the CSS to change the text input background color
|
28 |
+
input_field_style = """
|
29 |
+
<style>
|
30 |
+
/* Customize the text input field background and text color */
|
31 |
+
.stTextInput input {
|
32 |
+
background-color: #fbd8bf; /* 'Rind' color */
|
33 |
+
color: #232F3E; /* Dark text color */
|
34 |
+
}
|
35 |
+
/* You might also want to change the color for textarea if you're using it */
|
36 |
+
.stTextArea textarea {
|
37 |
+
background-color: #fbd8bf; /* 'Rind' color */
|
38 |
+
color: #232F3E; /* Dark text color */
|
39 |
+
}
|
40 |
+
</style>
|
41 |
+
"""
|
42 |
+
|
43 |
+
# Inject custom styles into the Streamlit app
|
44 |
+
st.markdown(input_field_style, unsafe_allow_html=True)
|
45 |
+
|
46 |
+
|
47 |
+
# Creating Tabs
|
48 |
+
tab1, tab2 = st.tabs(["Image Generation", "Text Generation"])
|
49 |
+
|
50 |
+
with tab1:
|
51 |
+
# Create two columns for layout
|
52 |
+
left_column, right_column = st.columns(2)
|
53 |
+
# ===========
|
54 |
+
with left_column:
|
55 |
+
# Define Streamlit UI elements
|
56 |
+
st.title('Stable Diffusion XL Image Generation with AWS Inferentia')
|
57 |
+
|
58 |
+
prompt_one = st.text_area("Enter your prompt:",
|
59 |
+
f"Raccoon astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
|
60 |
+
|
61 |
+
# Number of inference steps
|
62 |
+
num_inference_steps_one = st.slider("Number of Inference Steps",
|
63 |
+
min_value=1,
|
64 |
+
max_value=100,
|
65 |
+
value=30,
|
66 |
+
help="More steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.")
|
67 |
+
|
68 |
+
# Create an expandable section for optional parameters
|
69 |
+
with st.expander("Optional Parameters"):
|
70 |
+
# Random seed input
|
71 |
+
seed_one = st.number_input("Random seed",
|
72 |
+
value=555,
|
73 |
+
help="Set to the same value to generate the same image if other inputs are the same, change to generate a different image for same inputs.")
|
74 |
+
|
75 |
+
# Negative prompt input
|
76 |
+
negative_prompt_one = st.text_area("Enter your negative prompt:",
|
77 |
+
"cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
+
if st.button('Generate Image'):
|
86 |
+
with st.spinner(f'Generating Image with {num_inference_steps_one} iterations'):
|
87 |
+
with right_column:
|
88 |
+
start_time = time.time()
|
89 |
+
# ===============
|
90 |
+
# Example input data
|
91 |
+
prompt_input_one = {
|
92 |
+
"prompt": prompt_one,
|
93 |
+
"parameters": {
|
94 |
+
"num_inference_steps": num_inference_steps_one,
|
95 |
+
"seed": seed_one,
|
96 |
+
"negative_prompt": negative_prompt_one
|
97 |
+
}
|
98 |
+
}
|
99 |
|
100 |
+
# Make API request
|
101 |
+
response_one = requests.post(api_url, json=prompt_input_one)
|
102 |
|
103 |
+
# Process and display the response
|
104 |
+
if response_one.status_code == 200:
|
105 |
+
result_one = response_one.json()
|
106 |
+
# st.success(f"Prediction result: {result}")
|
107 |
+
image_one = display_image(decode_base64_image(result_one["generated_images"][0]))
|
108 |
+
st.image(image_one,
|
109 |
+
caption=f"{prompt_one}")
|
110 |
+
end_time = time.time()
|
111 |
+
total_time = round(end_time - start_time, 2)
|
112 |
+
st.text(f"Prompt: {prompt_one}")
|
113 |
+
st.text(f"Number of Iterations: {num_inference_steps_one}")
|
114 |
+
st.text(f"Random Seed: {seed_one}")
|
115 |
+
st.text(f'Total time taken: {total_time} seconds')
|
116 |
+
# Calculate and display the time per iteration in milliseconds
|
117 |
+
time_per_iteration_ms = (total_time / num_inference_steps_one)
|
118 |
+
st.text(f'Time per iteration: {time_per_iteration_ms:.2f} seconds')
|
119 |
+
else:
|
120 |
+
st.error(f"Error: {response_one.text}")
|
121 |
|
|
|
|
|
122 |
|
123 |
+
with tab2:
|
124 |
+
# ===========
|
125 |
+
# Define Streamlit UI elements
|
126 |
+
st.title('Stable Diffusion XL Image Generation')
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
prompt = st.text_area("Enter your prompt:",
|
131 |
+
"Raccoons astronaut in space, sci-fi, future, cold color palette, muted colors, detailed, 8k")
|
132 |
+
|
133 |
+
# Number of inference steps
|
134 |
+
num_inference_steps = st.slider("Number of Inference Steps",
|
135 |
min_value=1,
|
136 |
max_value=100,
|
137 |
+
value=40,
|
138 |
+
help="More steps might improve quality, with diminishing marginal returns. 30-50 seems best, but your mileage may vary.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
# Create an expandable section for optional parameters
|
141 |
+
with st.expander("Optional Parameters"):
|
142 |
+
# Random seed input
|
143 |
+
seed = st.number_input("Random seed",
|
144 |
+
value=42,
|
145 |
+
help="Set to the same value to generate the same image if other inputs are the same, change to generate a different image for same inputs.")
|
146 |
|
147 |
+
# Negative prompt input
|
148 |
+
negative_prompt = st.text_area("Enter your negative prompt:",
|
149 |
+
"anime, cartoon, graphic, text, painting, crayon, graphite, abstract glitch, blurry")
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
if st.button('Generate Image:'):
|
158 |
+
with st.spinner(f'Generating Image with {num_inference_steps} iterations'):
|
159 |
+
# ===============
|
160 |
+
# Example input data
|
161 |
+
prompt_input = {
|
162 |
+
"prompt": prompt,
|
163 |
+
"parameters": {
|
164 |
+
"num_inference_steps": num_inference_steps,
|
165 |
+
"seed": seed,
|
166 |
+
"negative_prompt": negative_prompt
|
167 |
+
}
|
168 |
+
}
|
169 |
+
|
170 |
+
# Make API request
|
171 |
+
response = requests.post(api_url, json=prompt_input)
|
172 |
+
|
173 |
+
# Process and display the response
|
174 |
+
if response.status_code == 200:
|
175 |
+
result = response.json()
|
176 |
+
# st.success(f"Prediction result: {result}")
|
177 |
+
image2 = display_image(decode_base64_image(result["generated_images"][0]))
|
178 |
+
st.header("SDXL Base")
|
179 |
+
st.image(image2,
|
180 |
+
caption=f"SDXL Base, {num_inference_steps} iterations")
|
181 |
+
else:
|
182 |
+
st.error(f"Error: {response.text}")
|
183 |
|
184 |
|
185 |
+
|