Spaces:
Sleeping
Sleeping
# Copyright (c) Guangsheng Bao. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import time | |
import numpy as np | |
import datasets | |
import torch | |
import random | |
import argparse | |
import os | |
import json | |
import custom_datasets | |
from model import load_tokenizer, load_model | |
def save_data(output_file, args, data): | |
# write args to file | |
args_file = f"{output_file}.args.json" | |
with open(args_file, "w") as fout: | |
json.dump(args.__dict__, fout, indent=4) | |
print(f"Args written into {args_file}") | |
# write the data to a json file in the save folder | |
data_file = f"{output_file}.raw_data.json" | |
with open(data_file, "w") as fout: | |
json.dump(data, fout, indent=4) | |
print(f"Raw data written into {data_file}") | |
def load_data(input_file): | |
data_file = f"{input_file}.raw_data.json" | |
with open(data_file, "r") as fin: | |
data = json.load(fin) | |
print(f"Raw data loaded from {data_file}") | |
return data | |
class DataBuilder: | |
def __init__(self, args): | |
self.args = args | |
self.base_tokenizer = load_tokenizer(args.base_model_name, args.dataset, args.cache_dir) | |
self.base_model = None if args.openai_model else load_model(args.base_model_name, args.device, args.cache_dir) | |
def _openai_sample(self, prefix): | |
def _drop_last_word(text): | |
return ' '.join(text.split(' ')[:-1]) | |
import openai | |
assert self.args.openai_key is not None, "Must provide OpenAI API key as --openai_key" | |
openai.api_key = self.args.openai_key | |
if self.args.openai_base is not None: | |
openai.api_base = self.args.openai_base | |
if self.args.dataset != 'pubmed': # keep Answer: prefix for pubmed | |
prefix = _drop_last_word(prefix) | |
# sample from the openai model | |
kwargs = {"max_tokens": 200} | |
if self.args.do_top_p: | |
kwargs['top_p'] = self.args.top_p | |
elif self.args.do_top_k: | |
kwargs['top_k'] = self.args.top_k | |
elif self.args.do_temperature: | |
kwargs['temperature'] = self.args.temperature | |
if self.args.openai_model == 'davinci': | |
kwargs["engine"] = self.args.openai_model | |
response = openai.Completion.create(prompt=f"{prefix}", **kwargs) | |
return prefix + response['choices'][0]['text'] | |
elif self.args.openai_model in ['gpt-3.5-turbo', 'gpt-4']: | |
roles = {'xsum': 'You are a News writer.', | |
'writing': 'You are a Fiction writer.', | |
'pubmed': 'You are a Technical writer.'} | |
prompts = {'xsum': 'Please write an article with about 150 words starting exactly with:', | |
'writing': 'Please write an article with about 150 words starting exactly with:', | |
'pubmed': 'Please answer the question in about 50 words.'} | |
messages = [ | |
{'role': 'system', 'content': roles[self.args.dataset]}, | |
{'role': 'user', 'content': f'{prompts[self.args.dataset]} {prefix}'}, | |
] | |
kwargs["model"] = self.args.openai_model | |
kwargs["messages"] = messages | |
response = openai.ChatCompletion.create(**kwargs) | |
response = response['choices'][0]['message']['content'] | |
# ChatGPT may repeat the prefix | |
if response.startswith(prefix[:20]): | |
return response | |
return prefix + ' ' + response | |
else: | |
raise NotImplementedError | |
# sample from base_model using ****only**** the first 30 tokens in each example as context | |
def _sample_from_model(self, texts, min_words=55, prompt_tokens=30): | |
# encode each text as a list of token ids | |
if self.args.dataset == 'pubmed': | |
texts = [t[:t.index(custom_datasets.SEPARATOR)] for t in texts] | |
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device) | |
else: | |
all_encoded = self.base_tokenizer(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(self.args.device) | |
all_encoded = {key: value[:, :prompt_tokens] for key, value in all_encoded.items()} | |
if self.args.openai_model: | |
# decode the prefixes back into text | |
prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True) | |
decoded = [] | |
for idx, prefix in enumerate(prefixes): | |
while idx >= len(decoded): | |
try: | |
decoded.append(self._openai_sample(prefix)) | |
except Exception as ex: | |
print(ex) | |
print('Wait 10 minutes before retry ...') | |
time.sleep(600) | |
else: | |
self.base_model.eval() | |
decoded = ['' for _ in range(len(texts))] | |
# sample from the model until we get a sample with at least min_words words for each example | |
# this is an inefficient way to do this (since we regenerate for all inputs if just one is too short), but it works | |
tries = 0 | |
m = 0 | |
while m < min_words: | |
if tries != 0: | |
print() | |
print(f"min words: {m}, needed {min_words}, regenerating (try {tries})") | |
prefixes = self.base_tokenizer.batch_decode(all_encoded['input_ids'], skip_special_tokens=True) | |
for prefix, x in zip(prefixes, decoded): | |
if len(x.split()) == m: | |
print(prefix, '=>', x) | |
sampling_kwargs = {} | |
if self.args.do_top_p: | |
sampling_kwargs['top_p'] = self.args.top_p | |
elif self.args.do_top_k: | |
sampling_kwargs['top_k'] = self.args.top_k | |
elif self.args.do_temperature: | |
sampling_kwargs['temperature'] = self.args.temperature | |
min_length = 50 if self.args.dataset in ['pubmed'] else 150 | |
outputs = self.base_model.generate(**all_encoded, min_length=min_length, max_length=200, do_sample=True, | |
**sampling_kwargs, pad_token_id=self.base_tokenizer.eos_token_id, | |
eos_token_id=self.base_tokenizer.eos_token_id) | |
decoded = self.base_tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
m = min(len(x.split()) for x in decoded) | |
tries += 1 | |
return decoded | |
def generate_samples(self, raw_data, batch_size): | |
# trim to shorter length | |
def _trim_to_shorter_length(texta, textb): | |
# truncate to shorter of o and s | |
shorter_length = min(len(texta.split(' ')), len(textb.split(' '))) | |
texta = ' '.join(texta.split(' ')[:shorter_length]) | |
textb = ' '.join(textb.split(' ')[:shorter_length]) | |
return texta, textb | |
def _truncate_to_substring(text, substring, idx_occurrence): | |
# truncate everything after the idx_occurrence occurrence of substring | |
assert idx_occurrence > 0, 'idx_occurrence must be > 0' | |
idx = -1 | |
for _ in range(idx_occurrence): | |
idx = text.find(substring, idx + 1) | |
if idx == -1: | |
return text | |
return text[:idx] | |
data = { | |
"original": [], | |
"sampled": [], | |
} | |
for batch in range(len(raw_data) // batch_size): | |
print('Generating samples for batch', batch, 'of', len(raw_data) // batch_size) | |
original_text = raw_data[batch * batch_size:(batch + 1) * batch_size] | |
sampled_text = self._sample_from_model(original_text, min_words=30 if self.args.dataset in ['pubmed'] else 55) | |
for o, s in zip(original_text, sampled_text): | |
if self.args.dataset == 'pubmed': | |
s = _truncate_to_substring(s, 'Question:', 2) | |
o = o.replace(custom_datasets.SEPARATOR, ' ') | |
o, s = _trim_to_shorter_length(o, s) | |
# add to the data | |
data["original"].append(o) | |
data["sampled"].append(s) | |
return data | |
def generate_data(args, dataset, key): | |
# strip newlines from each example; replace one or more newlines with a single space | |
def _strip_newlines(text): | |
return ' '.join(text.split()) | |
# load data | |
if dataset in custom_datasets.DATASETS: | |
data = custom_datasets.load(dataset, args.cache_dir) | |
else: | |
data = custom_datasets.load_dataset(dataset, split='train', cache_dir=args.cache_dir)[key] | |
# get unique examples, strip whitespace, and remove newlines | |
# then take just the long examples, shuffle, take the first 5,000 to tokenize to save time | |
# then take just the examples that are <= 512 tokens (for the base model) | |
# then generate n_samples samples | |
# remove duplicates from the data | |
data = list(dict.fromkeys(data)) # deterministic, as opposed to set() | |
# strip whitespace around each example | |
data = [x.strip() for x in data] | |
# remove newlines from each example | |
data = [_strip_newlines(x) for x in data] | |
# try to keep only examples with > 250 words | |
if dataset in ['writing', 'squad', 'xsum']: | |
long_data = [x for x in data if len(x.split()) > 250] | |
if len(long_data) > 0: | |
data = long_data | |
random.shuffle(data) | |
data = data[:5_000] | |
# keep only examples with <= 512 tokens according to base_tokenizer | |
# this step has the extra effect of removing examples with low-quality/garbage content | |
data_builder = DataBuilder(args) | |
tokenized_data = data_builder.base_tokenizer(data) | |
data = [x for x, y in zip(data, tokenized_data["input_ids"]) if len(y) <= 512] | |
# print stats about remaining data | |
print(f"Total number of samples: {len(data)}") | |
print(f"Average number of words: {np.mean([len(x.split()) for x in data])}") | |
return data_builder.generate_samples(data[:args.n_samples], batch_size=args.batch_size) | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--output_file', type=str, default="./exp_gpt3/data/xsum_gpt2") | |
parser.add_argument('--dataset', type=str, default="xsum") | |
parser.add_argument('--n_samples', type=int, default=200) | |
parser.add_argument('--openai_base', type=str, default=None) | |
parser.add_argument('--openai_key', type=str, default=None) | |
parser.add_argument('--openai_model', type=str, default=None) # davinci, gpt-3.5-turbo, gpt-4 | |
parser.add_argument('--base_model_name', type=str, default="gpt2") | |
parser.add_argument('--batch_size', type=int, default=50) | |
parser.add_argument('--do_top_k', action='store_true') | |
parser.add_argument('--top_k', type=int, default=40) | |
parser.add_argument('--do_top_p', action='store_true') | |
parser.add_argument('--top_p', type=float, default=0.96) | |
parser.add_argument('--do_temperature', action='store_true') | |
parser.add_argument('--temperature', type=float, default=0.8) | |
parser.add_argument('--seed', type=int, default=0) | |
parser.add_argument('--device', type=str, default="cuda") | |
parser.add_argument('--cache_dir', type=str, default="../cache") | |
args = parser.parse_args() | |
os.environ["XDG_CACHE_HOME"] = args.cache_dir | |
if not os.path.exists(args.cache_dir): | |
os.makedirs(args.cache_dir) | |
print(f"Using cache dir {args.cache_dir}") | |
random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
np.random.seed(args.seed) | |
print(f'Loading dataset {args.dataset}...') | |
dataset_keys = {'xsum': 'document', 'squad': 'context', 'writing': 'document'} | |
data = generate_data(args, args.dataset, dataset_keys[args.dataset] if args.dataset in dataset_keys else None) | |
save_data(args.output_file, args, data) | |