File size: 19,678 Bytes
87fcfdb
 
98aea07
 
 
87fcfdb
 
 
 
208d07b
87fcfdb
 
 
 
98aea07
 
5c7f1dd
e6e1858
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98aea07
 
 
 
 
 
 
 
0bb26da
 
98aea07
 
 
 
 
 
 
 
f543ce9
98aea07
 
 
 
 
 
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7205085
87fcfdb
 
 
 
 
 
 
 
0bb26da
 
 
42398d8
 
 
 
 
 
 
 
 
0bb26da
 
e6e1858
0bb26da
 
 
 
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98aea07
87fcfdb
 
 
 
98aea07
87fcfdb
 
 
 
98aea07
87fcfdb
 
98aea07
87fcfdb
98aea07
 
 
 
cec8691
98aea07
 
 
87fcfdb
 
 
 
98aea07
87fcfdb
 
98aea07
87fcfdb
98aea07
87fcfdb
98aea07
 
 
cec8691
98aea07
 
 
 
 
 
 
 
5b6e5b7
cec8691
 
 
98aea07
cec8691
98aea07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec8691
 
 
 
 
 
98aea07
 
 
 
cec8691
 
 
 
 
98aea07
 
 
87fcfdb
98aea07
87fcfdb
 
 
 
 
98aea07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cec8691
 
 
 
 
 
98aea07
 
 
 
cec8691
 
 
 
 
98aea07
 
 
87fcfdb
98aea07
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98aea07
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98aea07
 
87fcfdb
 
 
98aea07
87fcfdb
 
98aea07
87fcfdb
98aea07
87fcfdb
 
98aea07
87fcfdb
 
 
98aea07
 
 
 
 
87fcfdb
 
 
cec8691
 
 
98aea07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87fcfdb
98aea07
87fcfdb
 
98aea07
87fcfdb
 
98aea07
 
87fcfdb
 
 
 
 
 
 
 
 
 
 
 
98aea07
87fcfdb
98aea07
 
87fcfdb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import streamlit as st
import os
import re
from claude import embed_base64_for_claude, create_claude_image_request_for_image_captioning, \
    create_claude_request_for_text_completion, extract_data_from_text_xml
from prompts import prompts
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
    create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
from summarizer import create_brand_html, create_langchain_openai_query, create_screenshot_from_scrap_fly, check_and_compress_image
from theme import flux_generated_image, flux_generated_image_seed
import time
from PIL import Image
import io
from streamlit_gsheets import GSheetsConnection


# conn = st.connection("gsheets", type=GSheetsConnection)


def process_run(st, thread_id, assistant_id):
    run_id = runAssistant(thread_id, assistant_id)
    status = 'running'
    while status != 'completed':
        with st.spinner('. . .'):
            time.sleep(20)
            status = checkRunStatus(thread_id, run_id)
    thread_messages = retrieveThread(thread_id)
    for message in thread_messages:
        if not message['role'] == 'user':
            return message["content"]
        else:
            pass


def page5():
    st.title('Initialize your preferences!')
    system_prompt_passed = st.text_area("System Prompt", value=prompts["PROMPT_FOR_MOOD_AND_IDEA"],
                                        key="System Prompt")
    caption_system_prompt = st.text_area("Captioning System Prompt", value=prompts["CAPTION_SYSTEM_PROMPT"],
                                         key="Caption Generation System Prompt")
    caption_prompt = st.text_area("Caption Prompt", value=prompts["CAPTION_PROMPT"],
                                  key="Caption Generation Prompt")
    brand_summary_prompt = st.text_area("Prompt for Brand Summary", value=prompts["BRAND_SUMMARY_PROMPT"],
                                        key="Brand summary prompt")
    st.text("Running on Claude")
    col1, col2 = st.columns([1, 2])
    with col1:
        if st.button("Save the Prompt"):
            st.session_state["system_prompt"] = system_prompt_passed
            print(st.session_state["system_prompt"])
            st.session_state["caption_system_prompt"] = caption_system_prompt
            st.session_state["caption_prompt"] = caption_prompt
            st.session_state["brand_prompt"] = brand_summary_prompt
            st.success("Saved your prompts")
    with col2:
        if st.button("Start Testing!"):
            st.session_state['page'] = "Page 1"


def page1():
    st.title("Upload Product")
    st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
    st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
                unsafe_allow_html=True)
    uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
    product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
    col1, col2 = st.columns([1, 2])
    with col1:
        if st.button("Save"):
            st.session_state['uploaded_files'] = uploaded_files
            st.session_state['product_description'] = product_description
            st.success("Product information saved!")
    with col2:
        if st.button("Add product and move to next page"):
            if not uploaded_files:
                st.warning("Please upload at least one image.")
            elif not product_description:
                st.warning("Please provide a description for the product.")
            else:
                st.session_state['uploaded_files'] = uploaded_files
                st.session_state['product_description'] = product_description
                st.session_state['page'] = "Page 2"


def page2():
    import random
    st.title("Tell us about your shoot preference")
    st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
    shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
    st.session_state['shoot_type'] = shoot_type
    brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
    st.session_state['brand_link'] = brand_link
    if st.button("Get Brand Summary"):
        if brand_link:
            st.text("Using Scrapfly")
            brand_summary_html = create_screenshot_from_scrap_fly(brand_link)
            if brand_summary_html["success"]:
                # compressed_image = f"comp_brand_{random.randint(1, 100000000)}.png"
                # comp = check_and_compress_image(brand_summary_html["location"], compressed_image)
                # if comp["success"]:
                #     st.image(compressed_image)
                 #    brand_image_embed = embed_base64_for_claude(compressed_image)
                # else:
                st.image(brand_summary_html["location"])
                    # brand_image_embed = embed_base64_for_claude(brand_summary_html["location"])
                brand_summary_response = create_image_completion_request_gpt(brand_summary_html["location"], st.session_state["brand_prompt"])
                st.session_state['brand_summary'] = brand_summary_response
            else:
                st.text(f"Scrapfly failed due to: {brand_summary_html}")
                st.text("Using Langchain")
                brand_summary_html = create_brand_html(brand_link)
                brand_summary = create_langchain_openai_query(brand_summary_html)
                st.session_state['brand_summary'] = brand_summary
            st.success("Brand summary fetched!")
        else:
            st.warning("Please add a brand link.")
    brand_summary_value = st.session_state.get('brand_summary', "")
    editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
    st.session_state['brand_summary'] = editable_summary
    product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
    st.session_state['product_info'] = product_info
    reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
                                        key="reference_images_key")
    st.session_state['reference_images'] = reference_images
    if st.button("Give Me Ideas"):
        st.session_state['page'] = "Page 3"


def page3():
    import random
    st.title("Scene Suggestions")
    st.write("Based on your uploaded product and references!")
    feedback = st.chat_input("Provide feedback:")
    if not st.session_state.get("assistant_initialized", False):
        file_locations_for_product = []
        for uploaded_file in st.session_state['uploaded_files']:
            bytes_data = uploaded_file.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp_image_{random.randint(1, 100000000)}.png"
            with open(location, "wb") as f:
                f.write(bytes_data)
            file_locations_for_product.append(location)
            image.close()
        file_base64_embeds_product = [embed_base64_for_claude(location) for location in file_locations_for_product]
        caption_list_from_claude_product = []
        for file_embeds_base64 in file_base64_embeds_product:
            caption_from_claude = create_claude_image_request_for_image_captioning(
                st.session_state["caption_system_prompt"], st.session_state["caption_prompt"], file_embeds_base64)
            caption_list_from_claude_product.append(caption_from_claude)
        string_caption_list_product = str(caption_list_from_claude_product)
        file_locations_for_others = []
        for uploaded_file in st.session_state['reference_images']:
            bytes_data = uploaded_file.getvalue()
            image = Image.open(io.BytesIO(bytes_data))
            image.verify()
            location = f"temp2_image_{random.randint(1, 1000000)}.png"
            with open(location, "wb") as f:
                f.write(bytes_data)
            file_locations_for_others.append(location)
            image.close()
        file_base64_embeds = [embed_base64_for_claude(location) for location in file_locations_for_others]
        st.session_state.assistant_initialized = True
        caption_list_from_claude = []
        for file_embeds_base64 in file_base64_embeds:
            caption_from_claude = create_claude_image_request_for_image_captioning(
                st.session_state["caption_system_prompt"], st.session_state["caption_prompt"], file_embeds_base64)
            caption_list_from_claude.append(caption_from_claude)
        string_caption_list = str(caption_list_from_claude)
        st.session_state["caption_product"] = string_caption_list_product
        st.session_state["additional_caption"] = string_caption_list
        additional_info_param_for_prompt = f"Brand have provided reference images whose details are:" \
                                           f"```{string_caption_list}```. Apart from this brand needs" \
                                           f"{st.session_state['shoot_type']}"
        product_info = str(string_caption_list_product) + st.session_state['product_info']
        updated_prompt_for_claude = st.session_state["system_prompt"].replace(
            "{{BRAND_DETAILS}}", str(st.session_state['brand_summary'])).replace(
            "{{PRODUCT_DETAILS}}", str(product_info)).replace(
            "{{ADDITIONAL_INFO}}", str(additional_info_param_for_prompt)
        )
        print(f"UP PROMPT:{updated_prompt_for_claude}")
        st.session_state["updated_prompt"] = updated_prompt_for_claude
        message_schema_for_claude = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": updated_prompt_for_claude
                    }
                ]
            }
        ]
        response_from_claude = create_claude_request_for_text_completion(message_schema_for_claude)
        campaign_pattern = r"<campaign_idea>(.*?)</campaign_idea>"
        campaigns = re.findall(campaign_pattern, response_from_claude, re.DOTALL)
        concat_prompt_list = []
        for idx, campaign in enumerate(campaigns, start=1):
            get_model_prompt = extract_data_from_text_xml(campaign, "model_prompt")
            get_background_prompt = extract_data_from_text_xml(campaign, "background_prompt")

            if get_model_prompt and get_background_prompt:  # Ensure both prompts exist
                # Clean and concatenate the prompts
                concat_prompt_flux = (get_model_prompt.strip() + " " + get_background_prompt.strip()).strip()
                concat_prompt_list.append(concat_prompt_flux)

        flux_generated_theme_image = []
        for concat_prompt in concat_prompt_list:
            theme_image = flux_generated_image(concat_prompt)
            flux_generated_theme_image.append(theme_image["file_name"])

        # Debugging: print generated image file names
        # print(flux_generated_theme_image)

        # Store the session state
        st.session_state["descriptions"] = concat_prompt_list
        st.session_state["claude_context"] = response_from_claude
        st.session_state["images"] = flux_generated_theme_image
    if feedback:
        updated_context = st.session_state["claude_context"]
        if 'images' in st.session_state and 'descriptions' in st.session_state:
            for image_path in st.session_state['images']:
                os.remove(image_path)
            del st.session_state['images']
            del st.session_state['descriptions']
            del st.session_state["claude_context"]
        message_schema_for_claude = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": st.session_state["updated_prompt"]
                    }
                ]
            },
            {
                "role": "assistant",
                "content": [
                    {
                        "type": "text",
                        "text": updated_context}
                ]
            },
            {
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": feedback
                    }
                ]
            },

        ]
        response_from_claude = create_claude_request_for_text_completion(message_schema_for_claude)
        campaign_pattern = r"<campaign_idea>(.*?)</campaign_idea>"
        campaigns = re.findall(campaign_pattern, response_from_claude, re.DOTALL)
        concat_prompt_list = []
        for idx, campaign in enumerate(campaigns, start=1):
            get_model_prompt = extract_data_from_text_xml(campaign, "model_prompt")
            get_background_prompt = extract_data_from_text_xml(campaign, "background_prompt")

            if get_model_prompt and get_background_prompt:  # Ensure both prompts exist
                # Clean and concatenate the prompts
                concat_prompt_flux = (get_model_prompt.strip() + " " + get_background_prompt.strip()).strip()
                concat_prompt_list.append(concat_prompt_flux)

        flux_generated_theme_image = []
        for concat_prompt in concat_prompt_list:
            theme_image = flux_generated_image(concat_prompt)
            flux_generated_theme_image.append(theme_image["file_name"])

        # Debugging: print generated image file names
        # print(flux_generated_theme_image)

        # Store the session state
        st.session_state["descriptions"] = concat_prompt_list
        st.session_state["claude_context"] = response_from_claude
        st.session_state["images"] = flux_generated_theme_image
    selected_image_index = None
    cols = st.columns(4)
    for i in range(len(st.session_state["images"])):
        with cols[i]:
            st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
            if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
                selected_image_index = i
    if selected_image_index is not None and st.button("Refine"):
        st.session_state.selected_image_index = selected_image_index
        st.session_state.selected_image = st.session_state.images[selected_image_index]
        st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
        st.session_state['page'] = "Page 4"
    if st.button("Go Back!"):
        st.session_state.page = "Page 2"


def page4():
    import json
    selected_theme_text_by_user = st.session_state.descriptions[st.session_state.selected_image_index]
    print(selected_theme_text_by_user)
    with (st.sidebar):
        st.title(st.session_state["product_info"])
        st.write("Product Image")
        st.image(st.session_state['uploaded_files'])
        st.text("Scene Suggestion:")
        st.image(st.session_state.selected_image)
        dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
        seed = st.selectbox(
            "Seed Preference",
            ("Fixed", "Random"),
        )
        if seed == "Fixed":
            seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
        else:
            seed_number = 0
            st.text("Thanks will take care")
        model__bg_preference = st.text_area("Edit Model & BG Idea", value=selected_theme_text_by_user,
                                            key="Model & BG Idea")
        start_chat = st.button("Start Chat")
    if "mood_chat_messages" not in st.session_state:
        st.session_state["mood_chat_messages"] = []
    if seed and dimensions and model__bg_preference:
        if start_chat:
            if seed == "Fixed":
                generated_flux_image = flux_generated_image_seed(model__bg_preference, seed_number, dimensions)
            else:
                generated_flux_image = flux_generated_image(model__bg_preference)
            st.session_state["mood_chat_messages"].append({
                "role": "AI",
                "message": model__bg_preference,
                "image": generated_flux_image["file_name"]
            })
        # for message in st.session_state["mood_chat_messages"]:
        #  if message["role"] == "AI":
        #     st.write(f"Caimera AI: {message['message']}")
        #    st.image(message['image'])
        #else:
        #   st.write(f"**You**: {message['message']}")
        user_input = st.chat_input("Type your message here...")
        if user_input:
            st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
            updated_flux_prompt = prompts["PROMPT_TO_UPDATE_IDEA_OR_MOOD"].format(
                EXISTING_MODEL_BG_PROMPT=model__bg_preference,
                USER_INSTRUCTIONS=user_input
            )
            message_schema_for_claude = [
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": updated_flux_prompt
                        }
                    ]
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": str(st.session_state["mood_chat_messages"])}
                    ]
                },
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": user_input + "Reference of previous conversation is also added."
                        }
                    ]
                },
            ]
            response_from_claude = create_claude_request_for_text_completion(message_schema_for_claude)
            cleaned_prompt = extract_data_from_text_xml(response_from_claude, "updated_prompt")
            if seed == "Fixed":
                generated_flux_image_n = flux_generated_image_seed(cleaned_prompt, seed_number,
                                                                   dimensions)
            else:
                generated_flux_image_n = flux_generated_image(cleaned_prompt)
            st.session_state["mood_chat_messages"].append({
                "role": "AI",
                "message": cleaned_prompt,
                "actual_response": response_from_claude,
                "image": generated_flux_image_n["file_name"]
            })
        for message in st.session_state["mood_chat_messages"]:
            if message["role"] == "AI":
                st.write(f"**AI**: {message['message']}")
                st.image(message['image'])
            else:
                st.write(f"**You**: {message['message']}")
        print(seed_number)


if 'page' not in st.session_state:
    st.session_state.page = "Page 5"

if st.session_state.page == "Page 5":
    page5()
if st.session_state.page == "Page 1":
    page1()
elif st.session_state.page == "Page 2":
    page2()
elif st.session_state.page == "Page 3":
    page3()
elif st.session_state.page == "Page 4":
    page4()