Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- app.py +414 -0
- constants.py +131 -0
- gpt.py +198 -0
- prompts.py +72 -0
- requirements.txt +9 -0
- summarizer.py +36 -0
- theme.py +67 -0
app.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from prompts import prompts
|
4 |
+
from constants import JSON_SCHEMA_FOR_GPT, UPDATED_MODEL_ONLY_SCHEMA, JSON_SCHEMA_FOR_LOC_ONLY
|
5 |
+
from gpt import runAssistant, checkRunStatus, retrieveThread, createAssistant, saveFileOpenAI, startAssistantThread, \
|
6 |
+
create_chat_completion_request_open_ai_for_summary, addMessageToThread, create_image_completion_request_gpt
|
7 |
+
from summarizer import create_brand_html, create_langchain_openai_query
|
8 |
+
from theme import flux_generated_image, flux_generated_image_seed
|
9 |
+
import time
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
|
13 |
+
|
14 |
+
def process_run(st, thread_id, assistant_id):
|
15 |
+
run_id = runAssistant(thread_id, assistant_id)
|
16 |
+
status = 'running'
|
17 |
+
while status != 'completed':
|
18 |
+
with st.spinner('. . .'):
|
19 |
+
time.sleep(20)
|
20 |
+
status = checkRunStatus(thread_id, run_id)
|
21 |
+
thread_messages = retrieveThread(thread_id)
|
22 |
+
for message in thread_messages:
|
23 |
+
if not message['role'] == 'user':
|
24 |
+
return message["content"]
|
25 |
+
else:
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def page1():
|
30 |
+
st.title("Upload Product")
|
31 |
+
st.markdown("<h2 style='color:#FF5733; font-weight:bold;'>Add a Product</h2>", unsafe_allow_html=True)
|
32 |
+
st.markdown("<p style='color:#444;'>Upload your product images, more images you upload better the AI learns</p>",
|
33 |
+
unsafe_allow_html=True)
|
34 |
+
uploaded_files = st.file_uploader("Upload Images", accept_multiple_files=True, key="uploaded_files_key")
|
35 |
+
product_description = st.text_area("Describe the product", value=st.session_state.get("product_description", ""))
|
36 |
+
col1, col2 = st.columns([1, 2])
|
37 |
+
with col1:
|
38 |
+
if st.button("Save"):
|
39 |
+
st.session_state['uploaded_files'] = uploaded_files
|
40 |
+
st.session_state['product_description'] = product_description
|
41 |
+
st.success("Product information saved!")
|
42 |
+
with col2:
|
43 |
+
if st.button("Add product and move to next page"):
|
44 |
+
if not uploaded_files:
|
45 |
+
st.warning("Please upload at least one image.")
|
46 |
+
elif not product_description:
|
47 |
+
st.warning("Please provide a description for the product.")
|
48 |
+
else:
|
49 |
+
st.session_state['uploaded_files'] = uploaded_files
|
50 |
+
st.session_state['product_description'] = product_description
|
51 |
+
st.session_state['page'] = "Page 2"
|
52 |
+
|
53 |
+
|
54 |
+
def page2():
|
55 |
+
st.title("Tell us about your shoot preference")
|
56 |
+
st.markdown("<h3 style='color:#444;'>What are you shooting today?</h3>", unsafe_allow_html=True)
|
57 |
+
shoot_type = st.radio("Select your shoot type:", ["Editorial", "Catalogue"], index=0)
|
58 |
+
st.session_state['shoot_type'] = shoot_type
|
59 |
+
brand_link = st.text_input("Add your brand link:", value=st.session_state.get("brand_link", ""))
|
60 |
+
st.session_state['brand_link'] = brand_link
|
61 |
+
if st.button("Get Brand Summary"):
|
62 |
+
if brand_link:
|
63 |
+
brand_summary_html = create_brand_html(brand_link)
|
64 |
+
brand_summary = create_langchain_openai_query(brand_summary_html)
|
65 |
+
st.session_state['brand_summary'] = brand_summary
|
66 |
+
st.success("Brand summary fetched!")
|
67 |
+
else:
|
68 |
+
st.warning("Please add a brand link.")
|
69 |
+
brand_summary_value = st.session_state.get('brand_summary', "")
|
70 |
+
editable_summary = st.text_area("Brand Summary:", value=brand_summary_value, height=100)
|
71 |
+
st.session_state['brand_summary'] = editable_summary
|
72 |
+
product_info = st.text_area("Tell us something about your product:", value=st.session_state.get("product_info", ""))
|
73 |
+
st.session_state['product_info'] = product_info
|
74 |
+
reference_images = st.file_uploader("Upload Reference Images", accept_multiple_files=True,
|
75 |
+
key="reference_images_key")
|
76 |
+
st.session_state['reference_images'] = reference_images
|
77 |
+
if st.button("Give Me Ideas"):
|
78 |
+
st.session_state['page'] = "Page 3"
|
79 |
+
|
80 |
+
|
81 |
+
def page3():
|
82 |
+
st.title("Scene Suggestions")
|
83 |
+
st.write("Based on your uploaded product and references!")
|
84 |
+
feedback = st.chat_input("Provide feedback:")
|
85 |
+
if not st.session_state.get("assistant_initialized", False):
|
86 |
+
assistant_id = createAssistant("You are a helpful assistant who is an expert in Fashion Shoots.")
|
87 |
+
updated_prompt = prompts["IDEA_GENERATION_PROMPT"].format(
|
88 |
+
brand_details=st.session_state["brand_summary"],
|
89 |
+
product_details=st.session_state["product_info"],
|
90 |
+
type_of_shoot=st.session_state["shoot_type"],
|
91 |
+
json_schema=JSON_SCHEMA_FOR_GPT,
|
92 |
+
product_name=st.session_state["product_description"]
|
93 |
+
)
|
94 |
+
file_locations = []
|
95 |
+
for uploaded_file in st.session_state['uploaded_files']:
|
96 |
+
bytes_data = uploaded_file.getvalue()
|
97 |
+
image = Image.open(io.BytesIO(bytes_data))
|
98 |
+
image.verify()
|
99 |
+
location = f"temp_image_{uploaded_file.name}"
|
100 |
+
with open(location, "wb") as f:
|
101 |
+
f.write(bytes_data)
|
102 |
+
file_locations.append(location)
|
103 |
+
image.close()
|
104 |
+
for uploaded_file in st.session_state['reference_images']:
|
105 |
+
bytes_data = uploaded_file.getvalue()
|
106 |
+
image = Image.open(io.BytesIO(bytes_data))
|
107 |
+
image.verify()
|
108 |
+
location = f"temp2_image_{uploaded_file.name}"
|
109 |
+
with open(location, "wb") as f:
|
110 |
+
f.write(bytes_data)
|
111 |
+
file_locations.append(location)
|
112 |
+
image.close()
|
113 |
+
file_ids = [saveFileOpenAI(location) for location in file_locations]
|
114 |
+
thread_id = startAssistantThread(file_ids, updated_prompt, "yes", "yes")
|
115 |
+
st.session_state.assistant_id = assistant_id
|
116 |
+
st.session_state.thread_id = thread_id
|
117 |
+
st.session_state.assistant_initialized = True
|
118 |
+
regenerate_images(thread_id, assistant_id)
|
119 |
+
if feedback:
|
120 |
+
if 'images' in st.session_state and 'descriptions' in st.session_state:
|
121 |
+
for image_path in st.session_state['images']:
|
122 |
+
os.remove(image_path)
|
123 |
+
del st.session_state['images']
|
124 |
+
del st.session_state['descriptions']
|
125 |
+
del st.session_state["json_descriptions"]
|
126 |
+
addMessageToThread(st.session_state.thread_id, feedback)
|
127 |
+
regenerate_images(st.session_state.thread_id, st.session_state.assistant_id)
|
128 |
+
selected_image_index = None
|
129 |
+
cols = st.columns(1)
|
130 |
+
for i in range(len(st.session_state["images"])):
|
131 |
+
with cols[i]:
|
132 |
+
st.image(st.session_state.images[i], caption=st.session_state.descriptions[i], use_column_width=True)
|
133 |
+
if st.radio(f"Select {i + 1}", [f"Select Image {i + 1}"], key=f"radio_{i}"):
|
134 |
+
selected_image_index = i
|
135 |
+
if selected_image_index is not None and st.button("Refine"):
|
136 |
+
st.session_state.selected_image_index = selected_image_index
|
137 |
+
st.session_state.selected_image = st.session_state.images[selected_image_index]
|
138 |
+
st.session_state.selected_text = st.session_state.descriptions[selected_image_index]
|
139 |
+
st.session_state['page'] = "Page 4"
|
140 |
+
if st.button("Go Back!"):
|
141 |
+
st.session_state.page = "Page 2"
|
142 |
+
|
143 |
+
|
144 |
+
def regenerate_images(thread_id, assistant_id):
|
145 |
+
"""Helper function to generate images and descriptions."""
|
146 |
+
response_from_process_list = []
|
147 |
+
for _ in range(1): # Assuming you generate 1 set of image/description
|
148 |
+
response_from_process = process_run(st, thread_id, assistant_id)
|
149 |
+
response_from_process_list.append(response_from_process)
|
150 |
+
|
151 |
+
summary_list = []
|
152 |
+
for final_response in response_from_process_list:
|
153 |
+
prompt_for_idea_summary = prompts["IDEA_SUMMARY_PROMPT"].format(
|
154 |
+
json_schema=str(final_response)
|
155 |
+
)
|
156 |
+
summary = create_chat_completion_request_open_ai_for_summary(prompt_for_idea_summary, "No")
|
157 |
+
summary_list.append(summary)
|
158 |
+
|
159 |
+
# Generate images based on the summaries
|
160 |
+
flux_generated_theme_image = []
|
161 |
+
for summary in summary_list:
|
162 |
+
theme_image = flux_generated_image(summary)
|
163 |
+
flux_generated_theme_image.append(theme_image["file_name"])
|
164 |
+
|
165 |
+
# Save the new images and descriptions in session state
|
166 |
+
st.session_state["images"] = flux_generated_theme_image
|
167 |
+
st.session_state["descriptions"] = summary_list
|
168 |
+
st.session_state["json_descriptions"] = response_from_process_list
|
169 |
+
|
170 |
+
|
171 |
+
def page4():
|
172 |
+
import json
|
173 |
+
selected_theme_text_by_user = st.session_state.json_descriptions[st.session_state.selected_image_index]
|
174 |
+
print(selected_theme_text_by_user)
|
175 |
+
schema_for_model_bg = {"type": "object",
|
176 |
+
"properties": {
|
177 |
+
"Model": {
|
178 |
+
"type": "string",
|
179 |
+
"description": "The model name or identifier."
|
180 |
+
},
|
181 |
+
"Background": {
|
182 |
+
"type": "string",
|
183 |
+
"description": "Description or type of the background."
|
184 |
+
}},
|
185 |
+
"required": ["Model", "Background"],
|
186 |
+
"additionalProperties": False
|
187 |
+
}
|
188 |
+
prompt_to_get_details = (f"You are provided with a brief of a Fashion Shoot : "
|
189 |
+
f"{st.session_state["json_descriptions"]}).\n Now provide me a JSON which will"
|
190 |
+
f"have two keys ```Model``` and ```Background```. Provide all detail's"
|
191 |
+
f"present about model and background in the brief provided by you. Just provide a "
|
192 |
+
f"natural langauge description. I will use it as description of model and "
|
193 |
+
f"background needed by the brand Output JSON following the schema")
|
194 |
+
response_from_open_ai = create_chat_completion_request_open_ai_for_summary(prompt_to_get_details,
|
195 |
+
schema_name="model_bg",
|
196 |
+
json_schema=schema_for_model_bg,
|
197 |
+
json_mode="yes")
|
198 |
+
json_response_from_open_ai = json.loads(response_from_open_ai)
|
199 |
+
with (st.sidebar):
|
200 |
+
st.title(st.session_state["product_info"])
|
201 |
+
st.write("Product Image")
|
202 |
+
st.image(st.session_state['uploaded_files'])
|
203 |
+
st.text("Scene Suggestion:")
|
204 |
+
st.image(st.session_state.selected_image)
|
205 |
+
dimensions = st.text_input("Enter Dimensions e.g 3:4, 1:2", key="Dimensions")
|
206 |
+
seed = st.selectbox(
|
207 |
+
"Seed Preference",
|
208 |
+
("Fixed", "Random"),
|
209 |
+
)
|
210 |
+
if seed == "Fixed":
|
211 |
+
seed_number = st.number_input("Enter an integer:", min_value=1, max_value=100000, value=10, step=1)
|
212 |
+
else:
|
213 |
+
seed_number = 0
|
214 |
+
st.text("Thanks will take care")
|
215 |
+
model_preference = st.selectbox(
|
216 |
+
"Model Preference",
|
217 |
+
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
218 |
+
)
|
219 |
+
if model_preference == "Create Own/Edit Pre-filled":
|
220 |
+
pre_filled_model_details = st.text_area("Model Idea", value=json_response_from_open_ai["Model"],
|
221 |
+
key="Model Idea")
|
222 |
+
elif model_preference == "Ideas":
|
223 |
+
prompt_to_generate_idea = ("Your task is to create model ideas for shoot of a product of a brand. "
|
224 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
225 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
226 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
227 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
228 |
+
"think step by step and provide your ideas about what type of model the brand"
|
229 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
230 |
+
"which the brand will use to create a shoot image. While creating the "
|
231 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
232 |
+
" mentioned in the JSON.")
|
233 |
+
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
234 |
+
brand_details=st.session_state["brand_summary"],
|
235 |
+
product_details=st.session_state["product_info"],
|
236 |
+
type_of_shoot=st.session_state["shoot_type"],
|
237 |
+
product_name=st.session_state["product_description"]
|
238 |
+
|
239 |
+
)
|
240 |
+
response_for_only_model = create_chat_completion_request_open_ai_for_summary(updated_model_idea_gen_prompt
|
241 |
+
, schema_name="model_only",
|
242 |
+
json_schema=
|
243 |
+
UPDATED_MODEL_ONLY_SCHEMA,
|
244 |
+
json_mode="yes")
|
245 |
+
pre_filled_model_details = st.text_area("Model Idea", value=response_for_only_model,
|
246 |
+
key="Model Idea")
|
247 |
+
else:
|
248 |
+
uploaded_files = st.file_uploader("Upload one Model Reference Image here",
|
249 |
+
accept_multiple_files=False, key="uploader")
|
250 |
+
bytes_data = uploaded_files.getvalue()
|
251 |
+
image = Image.open(io.BytesIO(bytes_data))
|
252 |
+
image.verify()
|
253 |
+
location = f"temp_image_{uploaded_files.name}"
|
254 |
+
with open(location, "wb") as f:
|
255 |
+
f.write(bytes_data)
|
256 |
+
image.close()
|
257 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_model_only}."
|
258 |
+
"Your task is to create model ideas for shoot of a product of a brand. "
|
259 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
260 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
261 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
262 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
263 |
+
"think step by step and provide your ideas about what type of model the brand"
|
264 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
265 |
+
"which the brand will use to create a shoot image. While creating the "
|
266 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
267 |
+
" mentioned in the JSON.")
|
268 |
+
updated_model_idea_gen_prompt = prompt_to_generate_idea.format(
|
269 |
+
json_schema_model_only=UPDATED_MODEL_ONLY_SCHEMA,
|
270 |
+
brand_details=st.session_state["brand_summary"],
|
271 |
+
product_details=st.session_state["product_info"],
|
272 |
+
type_of_shoot=st.session_state["shoot_type"],
|
273 |
+
product_name=st.session_state["product_description"]
|
274 |
+
|
275 |
+
)
|
276 |
+
json_response = create_image_completion_request_gpt(location, updated_model_idea_gen_prompt)
|
277 |
+
pre_filled_model_details = st.text_area("Model Idea", value=json_response,
|
278 |
+
key="Model Idea")
|
279 |
+
background_preference = st.selectbox(
|
280 |
+
"Background Preference",
|
281 |
+
("Create Own/Edit Pre-filled", "Ideas", "Upload Reference"),
|
282 |
+
)
|
283 |
+
if background_preference == "Create Own/Edit Pre-filled":
|
284 |
+
pre_filled_background_details = st.text_area("Background Idea",
|
285 |
+
value=json_response_from_open_ai["Background"],
|
286 |
+
key="Background Idea")
|
287 |
+
elif background_preference == "Ideas":
|
288 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_background_only}."
|
289 |
+
"Your task is to create location/background ideas for shoot of a "
|
290 |
+
"product of a brand. "
|
291 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
292 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
293 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
294 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
295 |
+
"think step by step and provide your ideas about what type of location the brand"
|
296 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
297 |
+
"which the brand will use to create a shoot image. While creating the "
|
298 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
299 |
+
" mentioned in the JSON.")
|
300 |
+
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
301 |
+
json_schema_background_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
302 |
+
brand_details=st.session_state["brand_summary"],
|
303 |
+
product_details=st.session_state["product_info"],
|
304 |
+
type_of_shoot=st.session_state["shoot_type"],
|
305 |
+
product_name=st.session_state["product_description"]
|
306 |
+
|
307 |
+
)
|
308 |
+
response_for_only_bg = create_chat_completion_request_open_ai_for_summary(updated_bg_idea_gen_prompt,
|
309 |
+
schema_name="bg_o",
|
310 |
+
json_schema=JSON_SCHEMA_FOR_LOC_ONLY,
|
311 |
+
json_mode="yes")
|
312 |
+
pre_filled_background_details = st.text_area("Background Idea", value=response_for_only_bg,
|
313 |
+
key="Background Idea")
|
314 |
+
else:
|
315 |
+
uploaded_files = st.file_uploader("Upload one Background Reference Image here",
|
316 |
+
accept_multiple_files=False, key="uploader")
|
317 |
+
bytes_data = uploaded_files.getvalue()
|
318 |
+
image = Image.open(io.BytesIO(bytes_data))
|
319 |
+
image.verify()
|
320 |
+
location = f"temp2_image_{uploaded_files.name}"
|
321 |
+
with open(location, "wb") as f:
|
322 |
+
f.write(bytes_data)
|
323 |
+
image.close()
|
324 |
+
prompt_to_generate_idea = ("Follow this JSON Schema : {json_schema_bg_only}."
|
325 |
+
"Your task is to create Background/Location ideas for shoot of a "
|
326 |
+
"product of a brand. "
|
327 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name},"
|
328 |
+
"which is: ```{product_details}```.\n Reference images for the product and "
|
329 |
+
"brands shoot idea is already provided with you. Additionally brand wants to "
|
330 |
+
"have a ```{type_of_shoot}``` of the model. Now based on all provided details, "
|
331 |
+
"think step by step and provide your ideas about what type of location the brand"
|
332 |
+
"should need based on mentioned JSON format. Also provide a combined prompt "
|
333 |
+
"which the brand will use to create a shoot image. While creating the "
|
334 |
+
"combined prompt as mentioned in the JSON schema, do not miss any details you"
|
335 |
+
" mentioned in the JSON.")
|
336 |
+
updated_bg_idea_gen_prompt = prompt_to_generate_idea.format(
|
337 |
+
json_schema_bg_only=JSON_SCHEMA_FOR_LOC_ONLY,
|
338 |
+
brand_details=st.session_state["brand_summary"],
|
339 |
+
product_details=st.session_state["product_info"],
|
340 |
+
type_of_shoot=st.session_state["shoot_type"],
|
341 |
+
product_name=st.session_state["product_description"]
|
342 |
+
|
343 |
+
)
|
344 |
+
json_response = create_image_completion_request_gpt(location, updated_bg_idea_gen_prompt)
|
345 |
+
pre_filled_background_details = st.text_area("Background Idea", value=json_response,
|
346 |
+
key="Background Idea")
|
347 |
+
start_chat = st.button("Start Chat")
|
348 |
+
if "mood_chat_messages" not in st.session_state:
|
349 |
+
st.session_state["mood_chat_messages"] = []
|
350 |
+
if seed and dimensions and model_preference and background_preference:
|
351 |
+
if start_chat:
|
352 |
+
final_mood_board_image_prompt = prompts["FINAL_PROMPT_GENERATION"].format(
|
353 |
+
brand_details=st.session_state["brand_summary"],
|
354 |
+
product_details=st.session_state["product_info"],
|
355 |
+
type_of_shoot=st.session_state["shoot_type"],
|
356 |
+
product_name=st.session_state["product_description"],
|
357 |
+
model_details=pre_filled_model_details,
|
358 |
+
location_details=pre_filled_background_details,
|
359 |
+
theme_details=str(selected_theme_text_by_user),
|
360 |
+
chat_history=str(st.session_state["mood_chat_messages"])
|
361 |
+
)
|
362 |
+
prompt_for_flux_mood_board = create_chat_completion_request_open_ai_for_summary(
|
363 |
+
final_mood_board_image_prompt, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
364 |
+
if seed == "Fixed":
|
365 |
+
generated_flux_image = flux_generated_image_seed(prompt_for_flux_mood_board, seed_number, dimensions)
|
366 |
+
else:
|
367 |
+
generated_flux_image = flux_generated_image(prompt_for_flux_mood_board)
|
368 |
+
st.session_state["mood_chat_messages"].append({
|
369 |
+
"role": "AI",
|
370 |
+
"message": prompt_for_flux_mood_board,
|
371 |
+
"image": generated_flux_image["file_name"]
|
372 |
+
})
|
373 |
+
# for message in st.session_state["mood_chat_messages"]:
|
374 |
+
# if message["role"] == "AI":
|
375 |
+
# st.write(f"Caimera AI: {message['message']}")
|
376 |
+
# st.image(message['image'])
|
377 |
+
#else:
|
378 |
+
# st.write(f"**You**: {message['message']}")
|
379 |
+
user_input = st.chat_input("Type your message here...")
|
380 |
+
if user_input:
|
381 |
+
st.session_state["mood_chat_messages"].append({"role": "User", "message": user_input})
|
382 |
+
prompt_for_flux_mood_board_n = create_chat_completion_request_open_ai_for_summary(
|
383 |
+
user_input, "No", system_message=prompts["SYSTEM_PROMPT_FOR_MOOD_BOARD"])
|
384 |
+
if seed == "Fixed":
|
385 |
+
generated_flux_image_n = flux_generated_image_seed(prompt_for_flux_mood_board_n, seed_number,
|
386 |
+
dimensions)
|
387 |
+
else:
|
388 |
+
generated_flux_image_n = flux_generated_image(prompt_for_flux_mood_board_n)
|
389 |
+
st.session_state["mood_chat_messages"].append({
|
390 |
+
"role": "AI",
|
391 |
+
"message": prompt_for_flux_mood_board_n,
|
392 |
+
"image": generated_flux_image_n["file_name"]
|
393 |
+
})
|
394 |
+
for message in st.session_state["mood_chat_messages"]:
|
395 |
+
if message["role"] == "AI":
|
396 |
+
st.write(f"**AI**: {message['message']}")
|
397 |
+
st.image(message['image'])
|
398 |
+
else:
|
399 |
+
st.write(f"**You**: {message['message']}")
|
400 |
+
print(seed_number)
|
401 |
+
|
402 |
+
|
403 |
+
if 'page' not in st.session_state:
|
404 |
+
st.session_state.page = "Page 1"
|
405 |
+
|
406 |
+
# Routing between pages
|
407 |
+
if st.session_state.page == "Page 1":
|
408 |
+
page1()
|
409 |
+
elif st.session_state.page == "Page 2":
|
410 |
+
page2()
|
411 |
+
elif st.session_state.page == "Page 3":
|
412 |
+
page3()
|
413 |
+
elif st.session_state.page == "Page 4":
|
414 |
+
page4()
|
constants.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
JSON_SCHEMA_FOR_GPT = """
|
2 |
+
{
|
3 |
+
"title": "Fashion Campaign Ideas",
|
4 |
+
"type": "array",
|
5 |
+
"items": {
|
6 |
+
"type": "object",
|
7 |
+
"properties": {
|
8 |
+
"model": {
|
9 |
+
"type": "object",
|
10 |
+
"properties": {
|
11 |
+
"ethnicity": {
|
12 |
+
"type": "string",
|
13 |
+
"description": "The ethnicity of the model"
|
14 |
+
},
|
15 |
+
"age": {
|
16 |
+
"type": "integer",
|
17 |
+
"description": "The age of the model"
|
18 |
+
},
|
19 |
+
"gender": {
|
20 |
+
"type": "string",
|
21 |
+
"enum": ["male", "female", "non-binary"],
|
22 |
+
"description": "The gender of the model"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"required": ["ethnicity", "age", "gender"]
|
26 |
+
},
|
27 |
+
"location": {
|
28 |
+
"type": "string",
|
29 |
+
"description": "The location or setting for the shoot"
|
30 |
+
},
|
31 |
+
"mood": {
|
32 |
+
"type": "string",
|
33 |
+
"description": "The overall mood or atmosphere for the shoot"
|
34 |
+
},
|
35 |
+
"emotion": {
|
36 |
+
"type": "string",
|
37 |
+
"description": "The primary emotion to be conveyed in the shoot"
|
38 |
+
},
|
39 |
+
"accessories": {
|
40 |
+
"type": "array",
|
41 |
+
"items": {
|
42 |
+
"type": "string",
|
43 |
+
"description": "Accessories included in the fashion shoot (e.g., sunglasses, handbags, jewelry)"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"pose": {
|
47 |
+
"type": "string",
|
48 |
+
"description": "The type of pose the model will be holding during the shoot"
|
49 |
+
},
|
50 |
+
"target_market": {
|
51 |
+
"type": "string",
|
52 |
+
"description": "The target audience for the fashion piece"
|
53 |
+
},
|
54 |
+
"reasoning": {
|
55 |
+
"type": "string",
|
56 |
+
"description": "Explanation of why this particular campaign is suggested for the product"
|
57 |
+
},
|
58 |
+
"final_prompt": {
|
59 |
+
"type": "string",
|
60 |
+
"description": "The combined fashion shoot prompt, summarizing all details",
|
61 |
+
"readonly": true
|
62 |
+
}
|
63 |
+
},
|
64 |
+
"required": ["model", "location", "mood", "emotion", "accessories", "pose", "target_market", "reasoning"],
|
65 |
+
"definitions": {
|
66 |
+
"generateFinalPrompt": {
|
67 |
+
"description": "Generate the final prompt by combining all the inputs into a cohesive sentence.",
|
68 |
+
"template": "{mood} photoshoot in {location} featuring a {model.ethnicity}, {model.age}-year-old {model.gender} model wearing accessories like {accessories}. The model holds a {pose} pose, conveying a sense of {emotion}, aimed at the {target_market} market. Reasoning: {reasoning}"
|
69 |
+
}
|
70 |
+
}
|
71 |
+
}
|
72 |
+
}"""
|
73 |
+
|
74 |
+
UPDATED_MODEL_ONLY_SCHEMA = {
|
75 |
+
"type": "object",
|
76 |
+
"properties": {
|
77 |
+
"model": {
|
78 |
+
"type": "object",
|
79 |
+
"properties": {
|
80 |
+
"ethnicity": {
|
81 |
+
"type": "string",
|
82 |
+
"description": "The ethnicity of the model"
|
83 |
+
},
|
84 |
+
"age": {
|
85 |
+
"type": "integer",
|
86 |
+
"description": "The age of the model"
|
87 |
+
},
|
88 |
+
"gender": {
|
89 |
+
"type": "string",
|
90 |
+
"enum": ["male", "female", "non-binary"],
|
91 |
+
"description": "The gender of the model"
|
92 |
+
},
|
93 |
+
"model_prompt": {
|
94 |
+
"type": "string",
|
95 |
+
"description": "The prompt used to generate the model details"
|
96 |
+
},
|
97 |
+
"reasoning": {
|
98 |
+
"type": "string",
|
99 |
+
"description": "The reasoning behind the model selection"
|
100 |
+
},
|
101 |
+
"background": {
|
102 |
+
"type": "string",
|
103 |
+
"description": "The background information about the model"
|
104 |
+
}
|
105 |
+
},
|
106 |
+
"required": ["ethnicity", "age", "gender", "model_prompt", "reasoning", "background"],
|
107 |
+
"additionalProperties": False
|
108 |
+
}
|
109 |
+
},
|
110 |
+
"required": ["model"],
|
111 |
+
"additionalProperties": False
|
112 |
+
}
|
113 |
+
|
114 |
+
JSON_SCHEMA_FOR_LOC_ONLY = {
|
115 |
+
"type": "object",
|
116 |
+
"properties": {
|
117 |
+
"location": {
|
118 |
+
"type": "string",
|
119 |
+
"description": "The location or setting for the shoot"
|
120 |
+
},
|
121 |
+
"location_prompt": {
|
122 |
+
"type": "string",
|
123 |
+
"description": "The prompt or instruction related to the location"
|
124 |
+
},
|
125 |
+
"reasoning": {
|
126 |
+
"type": "string",
|
127 |
+
"description": "The reasoning or rationale behind selecting this location"
|
128 |
+
}
|
129 |
+
},
|
130 |
+
"required": ["location", "location_prompt", "reasoning"]
|
131 |
+
}
|
gpt.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import os
|
3 |
+
import base64
|
4 |
+
import requests
|
5 |
+
from prompts import prompts
|
6 |
+
from constants import JSON_SCHEMA_FOR_GPT
|
7 |
+
|
8 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
9 |
+
|
10 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
11 |
+
model = "gpt-4o"
|
12 |
+
title = "Caimera Mood board Expert"
|
13 |
+
|
14 |
+
|
15 |
+
def createAssistant(instruction_prompt):
|
16 |
+
instructions = instruction_prompt
|
17 |
+
assistant = client.beta.assistants.create(
|
18 |
+
name=title,
|
19 |
+
instructions=instructions,
|
20 |
+
model=model
|
21 |
+
)
|
22 |
+
return assistant.id
|
23 |
+
|
24 |
+
|
25 |
+
def saveFileOpenAI(location):
|
26 |
+
with open(location, "rb") as f:
|
27 |
+
file = client.files.create(file=f, purpose="vision")
|
28 |
+
os.remove(location)
|
29 |
+
return file.id
|
30 |
+
|
31 |
+
|
32 |
+
def startAssistantThread(file_id_enum, prompt_n, image_needed, json_mode_needed_or_not):
|
33 |
+
if json_mode_needed_or_not == "yes":
|
34 |
+
if image_needed == "yes":
|
35 |
+
messages = [
|
36 |
+
{
|
37 |
+
"role": "user",
|
38 |
+
"content": [
|
39 |
+
{
|
40 |
+
"type": "text",
|
41 |
+
"text": prompt_n
|
42 |
+
}
|
43 |
+
],
|
44 |
+
}
|
45 |
+
]
|
46 |
+
for file_id in file_id_enum:
|
47 |
+
messages[0]["content"].append({
|
48 |
+
"type": "image_file",
|
49 |
+
"image_file": {"file_id": file_id}
|
50 |
+
})
|
51 |
+
else:
|
52 |
+
messages = [
|
53 |
+
{
|
54 |
+
"role": "user",
|
55 |
+
"content": prompt_n}]
|
56 |
+
thread = client.beta.threads.create(messages=messages)
|
57 |
+
else:
|
58 |
+
if image_needed == "yes":
|
59 |
+
messages = [
|
60 |
+
{
|
61 |
+
"role": "user",
|
62 |
+
"content": [
|
63 |
+
{
|
64 |
+
"type": "text",
|
65 |
+
"text": prompt_n
|
66 |
+
}
|
67 |
+
],
|
68 |
+
}
|
69 |
+
]
|
70 |
+
for file_id in file_id_enum:
|
71 |
+
messages[0]["content"].append({
|
72 |
+
"type": "image_file",
|
73 |
+
"image_file": {"file_id": file_id}
|
74 |
+
})
|
75 |
+
else:
|
76 |
+
messages = [
|
77 |
+
{
|
78 |
+
"role": "user",
|
79 |
+
"content": prompt_n}]
|
80 |
+
thread = client.beta.threads.create(messages=messages)
|
81 |
+
return thread.id
|
82 |
+
|
83 |
+
|
84 |
+
def runAssistant(thread_id, assistant_id):
|
85 |
+
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=assistant_id)
|
86 |
+
return run.id
|
87 |
+
|
88 |
+
|
89 |
+
def checkRunStatus(thread_id, run_id):
|
90 |
+
run = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run_id)
|
91 |
+
return run.status
|
92 |
+
|
93 |
+
|
94 |
+
def retrieveThread(thread_id):
|
95 |
+
thread_messages = client.beta.threads.messages.list(thread_id)
|
96 |
+
list_messages = thread_messages.data
|
97 |
+
thread_messages = []
|
98 |
+
for message in list_messages:
|
99 |
+
obj = {}
|
100 |
+
obj['content'] = message.content[0].text.value
|
101 |
+
obj['role'] = message.role
|
102 |
+
thread_messages.append(obj)
|
103 |
+
return thread_messages[::-1]
|
104 |
+
|
105 |
+
|
106 |
+
def addMessageToThread(thread_id, prompt_n):
|
107 |
+
thread_message = client.beta.threads.messages.create(thread_id, role="user", content=prompt_n)
|
108 |
+
|
109 |
+
|
110 |
+
def create_chat_completion_request_open_ai_for_summary(prompt, json_mode, schema_name="",
|
111 |
+
json_schema="",
|
112 |
+
system_message="You are expert in Fashion "
|
113 |
+
"Shoots"):
|
114 |
+
import requests
|
115 |
+
if json_mode == "No":
|
116 |
+
url = "https://api.openai.com/v1/chat/completions"
|
117 |
+
headers = {
|
118 |
+
"Content-Type": "application/json",
|
119 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
120 |
+
}
|
121 |
+
data = {
|
122 |
+
"model": "gpt-4o",
|
123 |
+
"messages": [
|
124 |
+
{
|
125 |
+
"role": "system",
|
126 |
+
"content": system_message
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"role": "user",
|
130 |
+
"content": prompt
|
131 |
+
}
|
132 |
+
]
|
133 |
+
}
|
134 |
+
response = requests.post(url, headers=headers, json=data)
|
135 |
+
json_response = response.json()
|
136 |
+
else:
|
137 |
+
url = "https://api.openai.com/v1/chat/completions"
|
138 |
+
headers = {
|
139 |
+
"Content-Type": "application/json",
|
140 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
141 |
+
}
|
142 |
+
data = {
|
143 |
+
"model": "gpt-4o",
|
144 |
+
"messages": [
|
145 |
+
{
|
146 |
+
"role": "system",
|
147 |
+
"content": "You are expert in creating prompts for Fashion Shoots."
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"role": "user",
|
151 |
+
"content": prompt
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"response_format": {"type": "json_schema", "json_schema": {"name": schema_name, "strict": True, "schema":
|
155 |
+
json_schema}}
|
156 |
+
}
|
157 |
+
response = requests.post(url, headers=headers, json=data)
|
158 |
+
json_response = response.json()
|
159 |
+
print(json_response)
|
160 |
+
return json_response["choices"][0]["message"]["content"]
|
161 |
+
|
162 |
+
|
163 |
+
def encode_image(image_path):
|
164 |
+
with open(image_path, "rb") as image_file:
|
165 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
166 |
+
|
167 |
+
|
168 |
+
def create_image_completion_request_gpt(image_path, prompt):
|
169 |
+
base64_image = encode_image(image_path)
|
170 |
+
headers = {
|
171 |
+
"Content-Type": "application/json",
|
172 |
+
"Authorization": f"Bearer {OPENAI_API_KEY}"
|
173 |
+
}
|
174 |
+
payload = {
|
175 |
+
"model": "gpt-4o",
|
176 |
+
"messages": [
|
177 |
+
{
|
178 |
+
"role": "user",
|
179 |
+
"content": [
|
180 |
+
{
|
181 |
+
"type": "text",
|
182 |
+
"text": prompt
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"type": "image_url",
|
186 |
+
"image_url": {
|
187 |
+
"url": f"data:image/jpeg;base64,{base64_image}"
|
188 |
+
}
|
189 |
+
}
|
190 |
+
]
|
191 |
+
}
|
192 |
+
],
|
193 |
+
"max_tokens": 300
|
194 |
+
}
|
195 |
+
response = requests.post("https://api.openai.com/v1/chat/completions",
|
196 |
+
headers=headers, json=payload)
|
197 |
+
json_resp = response.json()
|
198 |
+
return json_resp["choices"][0]["message"]["content"]
|
prompts.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
prompts = {
|
2 |
+
"SYSTEM_PROMPT_FOR_MOOD_BOARD": """Act as a fashion stylist to generate detailed prompts for creating AI images
|
3 |
+
tailored for a fashion brand. Consider brand aesthetics, current fashion trends, color theory, brand themes,
|
4 |
+
and styles. \n
|
5 |
+
# Steps: \n
|
6 |
+
1. **Understand the Brand Aesthetics**: Analyze the brand's core values, style, and image.
|
7 |
+
Consider what makes their fashion unique and who their target audience is.\n
|
8 |
+
2. **Incorporate Fashion Trends**: Identify current fashion trends that align with the brand's aesthetics.
|
9 |
+
Consider elements like cuts, patterns, and colors that are relevant and fresh.\n
|
10 |
+
3. **Apply Color Theory**: Use color theory to choose a palette that complements the brand's existing themes
|
11 |
+
and stands out in AI-generated images.\n
|
12 |
+
4. **Focus on Brand Theme**: Consider how each element in your prompt sustains the brand's overall theme or
|
13 |
+
narrative. This could involve mood, setting, or cultural references.\n
|
14 |
+
5. **Detail the Image Composition**: Specify the composition elements such as the setting, pose, and styling
|
15 |
+
details. Consider using adjectives that communicate the desired mood and visual appeal.\n
|
16 |
+
# Output Format:\n
|
17 |
+
Each prompt should be a descriptive paragraph. The paragraph should include:\n
|
18 |
+
- Brand aesthetics and themes\n
|
19 |
+
- Relevant fashion trends and items\n
|
20 |
+
- Color palette and implications from color theory\n
|
21 |
+
- Desired mood and setting for the image\n
|
22 |
+
- Any specific styling or composition notes\n
|
23 |
+
# Examples\n
|
24 |
+
**Example 1 Input:**\n
|
25 |
+
- Brand: [Elegance Couture]\n
|
26 |
+
- Current Fashion Trends: [Minimalistic cut dresses, soft hues]\n
|
27 |
+
- Brand Theme: [Classic Elegance]\n
|
28 |
+
**Example 1 Output:**\n
|
29 |
+
fashion photography featuring a minimalistic cut dress that embodies the classic elegance of Elegance Couture.
|
30 |
+
The scene should be a soft, diffused setting with an ivory and blush color palette, reflecting a
|
31 |
+
serene yet sophisticated atmosphere. The model should pose with graceful ease, against an opulent
|
32 |
+
vintage backdrop, enhancing the brand's luxurious appeal.\n
|
33 |
+
**Example 2 Input:**\n
|
34 |
+
- Brand: [Urban Vogue]\n
|
35 |
+
- Current Fashion Trends: [Bold prints, oversized jackets]\n
|
36 |
+
- Brand Theme: [Edgy and Vibrant]\n
|
37 |
+
**Example 2 Output:**\n
|
38 |
+
realistic edgy photo that showcases Urban Vogue’s edgy and vibrant style.
|
39 |
+
The outfit should include an oversized jacket with a bold zebra print,
|
40 |
+
set against a dynamic urban landscape. The color scheme should be striking,
|
41 |
+
with electric blues and deep reds. The model should exhibit a confident pose,
|
42 |
+
capturing the bold energy and spirit of the city.\n
|
43 |
+
# Notes\n
|
44 |
+
- Ensure each prompt aligns with the specific preferences and branding guidelines of the fashion label.\n
|
45 |
+
- Think creatively about settings and poses to invent memorable and distinctive images.\n
|
46 |
+
- Consider lighting and texture elements that could enhance the visual output of the AI image model.""",
|
47 |
+
"IDEA_GENERATION_PROMPT": "Provide output in JSON schema, ```JSON SCHEMA ```: ```{json_schema}```.\n"
|
48 |
+
"Your task is to create shoot ideas for a product of a brand. "
|
49 |
+
"The details about the brand: ```{brand_details}.\n The product: {product_name}, "
|
50 |
+
"which is: "
|
51 |
+
"```{product_details}```.\n Reference images for the product and brands shoot idea is"
|
52 |
+
"already provided with you. Additionally brand wants to have a ```{type_of_shoot}```."
|
53 |
+
"Now based on all provided details, think step by step and provide your ideas in the"
|
54 |
+
"mentioned JSON format. Also provide a combined prompt which the brand will use to create"
|
55 |
+
"a shoot image. While creating the combined prompt as mentioned in the JSON schema, do "
|
56 |
+
"not miss any details you mentioned in other parts of the JSON for example for idea 1 "
|
57 |
+
"take location, model, product_reasoning everything in account for combined prompt.",
|
58 |
+
"IDEA_SUMMARY_PROMPT": """{json_schema}\nThis contains details about a brand a final prompt.
|
59 |
+
Now understand and summarize , and create a master prompt which will be used by a Fashion brand to create shoots.
|
60 |
+
You final prompt should be to the point, it should be in same style that is present in final prompt key inside the
|
61 |
+
JSON, also do not any details from location, model, final prompt etc.
|
62 |
+
IN OUTPUT JUST GIVE ME THE FINAL PROMPT NOTHING ELSE. NO OTHER EXTRA TEXTS NEEDED""",
|
63 |
+
"FINAL_PROMPT_GENERATION": "You have generate prompt to create fashion images as mentioned in the system"
|
64 |
+
"message based on provided context. Details about the brand: ```{brand_details}\n"
|
65 |
+
"The product: {product_name}, which is: ```{product_details}```. The brand is looking"
|
66 |
+
"for Specific model of style:{model_details}, location : {location_details}. The brand"
|
67 |
+
"is looking for this specific theme: {theme_details}."
|
68 |
+
"The brand"
|
69 |
+
"is shooting : {type_of_shoot} photography. Also take the chat history in account(if "
|
70 |
+
"present / needed) : {chat_history} to iterate the prompt. Now Based on the provided"
|
71 |
+
"information create a high quality prompt for a Fashion image for the brand."
|
72 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
openai
|
2 |
+
replicate
|
3 |
+
requests
|
4 |
+
pillow
|
5 |
+
langchain
|
6 |
+
unstructured
|
7 |
+
tiktoken
|
8 |
+
langchain-community
|
9 |
+
nltk
|
summarizer.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
from langchain.docstore.document import Document
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.llms.openai import OpenAI
|
6 |
+
from langchain.chains.summarize import load_summarize_chain
|
7 |
+
from langchain.document_loaders import UnstructuredURLLoader
|
8 |
+
import nltk
|
9 |
+
import openai
|
10 |
+
|
11 |
+
nltk.download('punkt')
|
12 |
+
OPENAI_API_KEY = "sk-proj-uCiflA45fuchFdjkbNJ7T3BlbkFJF5WiEf2zHkttr7s9kijX"
|
13 |
+
|
14 |
+
|
15 |
+
def create_brand_html(brand_link):
|
16 |
+
urls = [brand_link]
|
17 |
+
loader = UnstructuredURLLoader(urls=urls)
|
18 |
+
data = loader.load()
|
19 |
+
chunk_size = 3000
|
20 |
+
chunk_overlap = 200
|
21 |
+
text_splitter = CharacterTextSplitter(
|
22 |
+
chunk_size=chunk_size,
|
23 |
+
chunk_overlap=chunk_overlap,
|
24 |
+
length_function=len,
|
25 |
+
)
|
26 |
+
texts = text_splitter.split_text(data[0].page_content)
|
27 |
+
docs = [Document(page_content=t) for t in texts[:]]
|
28 |
+
return docs
|
29 |
+
|
30 |
+
|
31 |
+
def create_langchain_openai_query(docs):
|
32 |
+
openai.api_key = OPENAI_API_KEY
|
33 |
+
llm = OpenAI(temperature=0, openai_api_key=openai.api_key)
|
34 |
+
map_reduce_chain = load_summarize_chain(llm, chain_type="map_reduce")
|
35 |
+
output = map_reduce_chain.run(docs)
|
36 |
+
return output
|
theme.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import replicate
|
3 |
+
import base64
|
4 |
+
import os
|
5 |
+
|
6 |
+
os.environ["REPLICATE_API_TOKEN"] = os.getenv("REPLICATE_API_TOKEN")
|
7 |
+
|
8 |
+
|
9 |
+
def create_flux_request(prompt_for_image_generation):
|
10 |
+
payload = {
|
11 |
+
"prompt": prompt_for_image_generation,
|
12 |
+
"guidance": 3.5,
|
13 |
+
"num_outputs": 1,
|
14 |
+
"aspect_ratio": "3:4"
|
15 |
+
}
|
16 |
+
output = replicate.run(
|
17 |
+
"black-forest-labs/flux-dev",
|
18 |
+
input=payload
|
19 |
+
)
|
20 |
+
return output
|
21 |
+
|
22 |
+
|
23 |
+
def flux_generated_image(prompt_for_image_generation):
|
24 |
+
try:
|
25 |
+
flux_response_object = create_flux_request(prompt_for_image_generation)
|
26 |
+
data_uri = flux_response_object[0].url
|
27 |
+
header, encoded = data_uri.split(',', 1)
|
28 |
+
file_data = base64.b64decode(encoded)
|
29 |
+
random_int_for_file_prefix = random.randint(1, 1000000)
|
30 |
+
output_image_file_name = f"{random_int_for_file_prefix}_ide_theme_image.png"
|
31 |
+
with open(output_image_file_name, "wb") as f:
|
32 |
+
f.write(file_data)
|
33 |
+
return {"success": True, "file_name": output_image_file_name}
|
34 |
+
except Exception as e:
|
35 |
+
return {"success": False, "error": e}
|
36 |
+
|
37 |
+
|
38 |
+
def create_flux_request_seed(prompt_for_image_generation, seed, aspect_ratio):
|
39 |
+
print(f"YE SEED HAI MEPE:{seed}")
|
40 |
+
payload = {
|
41 |
+
"prompt": prompt_for_image_generation,
|
42 |
+
"guidance": 3.5,
|
43 |
+
"num_outputs": 1,
|
44 |
+
"aspect_ratio": str(aspect_ratio),
|
45 |
+
"seed": int(seed)
|
46 |
+
|
47 |
+
}
|
48 |
+
output = replicate.run(
|
49 |
+
"black-forest-labs/flux-dev",
|
50 |
+
input=payload
|
51 |
+
)
|
52 |
+
return output
|
53 |
+
|
54 |
+
|
55 |
+
def flux_generated_image_seed(prompt_for_image_generation, seed, aspect_ratio):
|
56 |
+
try:
|
57 |
+
flux_response_object = create_flux_request_seed(prompt_for_image_generation, seed, aspect_ratio)
|
58 |
+
data_uri = flux_response_object[0].url
|
59 |
+
header, encoded = data_uri.split(',', 1)
|
60 |
+
file_data = base64.b64decode(encoded)
|
61 |
+
random_int_for_file_prefix = random.randint(1, 1000000)
|
62 |
+
output_image_file_name = f"{random_int_for_file_prefix}_ide_theme_image.png"
|
63 |
+
with open(output_image_file_name, "wb") as f:
|
64 |
+
f.write(file_data)
|
65 |
+
return {"success": True, "file_name": output_image_file_name}
|
66 |
+
except Exception as e:
|
67 |
+
return {"success": False, "error": e}
|