Spaces:
Runtime error
Runtime error
import gradio as gr | |
from scipy.special import softmax | |
from transformers import AutoTokenizer, AutoConfig | |
from transformers import AutoModelForSequenceClassification | |
import numpy as np | |
#Setup | |
model_path = f"bambadij/Tweet_sentiment_analysis_Distilbert" | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
#Function | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
# Input preprocessing | |
text = "Covid cases are increasing fast!" | |
text = preprocess(text) | |
# PyTorch-based models | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores = output[0][0].detach().numpy() | |
scores = softmax(scores) | |
def sentiment_analysis(text): | |
text =preprocess(text) | |
#Pytorch-based models | |
encoded_input = tokenizer(text,return_tensors='pt') | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ =softmax(scores_) | |
#Foramt ouptput dict of scores | |
labels =['Negative','Neutral','Positive'] | |
scores = {l:float(s) for (l,s) in zip(labels,scores_)} | |
return scores | |
demo = gr.Interface( | |
fn=sentiment_analysis, | |
inputs=gr.Textbox(placeholder="Copy and paste /Write a tweet her..."), | |
outputs="label", | |
examples=[["what's up with the vaccine"], | |
["Covid cases are increasing fast!"], | |
["Covid has been invented by Issa"], | |
["I have a covid"], | |
["All the people are sick maybe it's covid"], | |
], | |
title="Covid 19 vaccin Sentiment Analysis App", | |
description = "This Aplication assesses if a twitter post relating vaccination is positive" | |
) | |
if __name__ == "__main__": | |
demo.launch() |