Spaces:
Sleeping
Sleeping
barghavani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,78 +1,31 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
from PyPDF2 import PdfReader
|
4 |
-
from langchain.text_splitter import CharacterTextSplitter
|
5 |
-
from langchain.embeddings.openai import OpenAIEmbeddings
|
6 |
-
from langchain.vectorstores import FAISS
|
7 |
-
from langchain.chains.question_answering import load_qa_chain
|
8 |
-
from langchain.callbacks import get_openai_callback
|
9 |
-
from langchain import HuggingFaceHub, LLMChain
|
10 |
-
from langchain.embeddings import HuggingFaceHubEmbeddings,HuggingFaceInferenceAPIEmbeddings
|
11 |
-
token = os.environ['HF_TOKEN']
|
12 |
-
repo_id = "sentence-transformers/all-mpnet-base-v2"
|
13 |
-
hf = HuggingFaceHubEmbeddings(
|
14 |
-
repo_id=repo_id,
|
15 |
-
task="feature-extraction",
|
16 |
-
huggingfacehub_api_token= token,
|
17 |
-
)
|
18 |
|
19 |
-
from
|
|
|
|
|
20 |
|
21 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
22 |
-
api_key=token, model_name="sentence-transformers/all-MiniLM-l6-v2"
|
23 |
-
)
|
24 |
|
|
|
25 |
|
26 |
-
def main():
|
27 |
-
|
28 |
-
st.set_page_config(page_title="Ask your PDF")
|
29 |
-
st.header("Ask your PDF 💬")
|
30 |
-
|
31 |
-
# upload file
|
32 |
-
pdf = st.file_uploader("Upload your PDF", type="pdf")
|
33 |
-
|
34 |
-
# extract the text
|
35 |
-
if pdf is not None:
|
36 |
-
pdf_reader = PdfReader(pdf)
|
37 |
-
text = ""
|
38 |
-
for page in pdf_reader.pages:
|
39 |
-
text += page.extract_text()
|
40 |
-
|
41 |
-
# split into chunks
|
42 |
-
text_splitter = CharacterTextSplitter(
|
43 |
-
separator="\n",
|
44 |
-
chunk_size=1000,
|
45 |
-
chunk_overlap=200,
|
46 |
-
length_function=len
|
47 |
-
)
|
48 |
-
chunks = text_splitter.split_text(text)
|
49 |
-
|
50 |
-
# create embeddings
|
51 |
-
# embeddings = OpenAIEmbeddings()
|
52 |
-
# embeddings = query(chunks)
|
53 |
-
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
54 |
-
|
55 |
-
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
56 |
-
|
57 |
-
# show user input
|
58 |
-
user_question = st.text_input("Ask a question about your PDF:")
|
59 |
-
if user_question:
|
60 |
-
docs = knowledge_base.similarity_search(user_question)
|
61 |
-
|
62 |
-
# llm = OpenAI()
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
huggingfacehub_api_token=token)
|
68 |
-
llm = hub_llm
|
69 |
-
chain = load_qa_chain(llm, chain_type="stuff")
|
70 |
-
with get_openai_callback() as cb:
|
71 |
-
response = chain.run(input_documents=docs, question=user_question)
|
72 |
-
print(cb)
|
73 |
-
|
74 |
-
st.write(response)
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Union
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
from pypdf import PdfReader
|
5 |
+
from transformers import pipeline
|
6 |
+
import gradio as gr
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
+
question_answerer = pipeline(task="question-answering", model="deepset/tinyroberta-squad2")
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def get_text_from_pdf(pdf_file: Union[str, Path]) -> str:
|
13 |
+
"""Read the PDF from the given path and return a string with its entire content."""
|
14 |
+
reader = PdfReader(pdf_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Extract text from all pages
|
17 |
+
full_text = ""
|
18 |
+
for page in reader.pages:
|
19 |
+
full_text += page.extract_text()
|
20 |
+
return full_text
|
21 |
+
|
22 |
+
|
23 |
+
def answer_doc_question(pdf_file, question):
|
24 |
+
pdf_text = get_text_from_pdf(pdf_file)
|
25 |
+
answer = question_answerer(question, pdf_text)
|
26 |
+
return answer["answer"]
|
27 |
+
|
28 |
+
|
29 |
+
pdf_input = gr.File(file_types=[".pdf"], label="Upload a PDF document and ask a question about it.")
|
30 |
+
question = gr.Textbox(label="Type a question regarding the uploaded document here.")
|
31 |
+
gr.Interface(fn=answer_doc_question, inputs=[pdf_input, question], outputs="text").launch()
|