|
|
|
""" |
|
Run YOLOv5 benchmarks on all supported export formats. |
|
|
|
Format | `export.py --include` | Model |
|
--- | --- | --- |
|
PyTorch | - | yolov5s.pt |
|
TorchScript | `torchscript` | yolov5s.torchscript |
|
ONNX | `onnx` | yolov5s.onnx |
|
OpenVINO | `openvino` | yolov5s_openvino_model/ |
|
TensorRT | `engine` | yolov5s.engine |
|
CoreML | `coreml` | yolov5s.mlmodel |
|
TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ |
|
TensorFlow GraphDef | `pb` | yolov5s.pb |
|
TensorFlow Lite | `tflite` | yolov5s.tflite |
|
TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite |
|
TensorFlow.js | `tfjs` | yolov5s_web_model/ |
|
|
|
Requirements: |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU |
|
$ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU |
|
$ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT |
|
|
|
Usage: |
|
$ python benchmarks.py --weights yolov5s.pt --img 640 |
|
""" |
|
|
|
import argparse |
|
import platform |
|
import sys |
|
import time |
|
from pathlib import Path |
|
|
|
import pandas as pd |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
|
|
|
|
import export |
|
from models.experimental import attempt_load |
|
from models.yolo import SegmentationModel |
|
from segment.val import run as val_seg |
|
from utils import notebook_init |
|
from utils.general import LOGGER, check_yaml, file_size, print_args |
|
from utils.torch_utils import select_device |
|
from val import run as val_det |
|
|
|
|
|
def run( |
|
weights=ROOT / "yolov5s.pt", |
|
imgsz=640, |
|
batch_size=1, |
|
data=ROOT / "data/coco128.yaml", |
|
device="", |
|
half=False, |
|
test=False, |
|
pt_only=False, |
|
hard_fail=False, |
|
): |
|
"""Run YOLOv5 benchmarks on multiple export formats and log results for model performance evaluation.""" |
|
y, t = [], time.time() |
|
device = select_device(device) |
|
model_type = type(attempt_load(weights, fuse=False)) |
|
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): |
|
try: |
|
assert i not in (9, 10), "inference not supported" |
|
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" |
|
if "cpu" in device.type: |
|
assert cpu, "inference not supported on CPU" |
|
if "cuda" in device.type: |
|
assert gpu, "inference not supported on GPU" |
|
|
|
|
|
if f == "-": |
|
w = weights |
|
else: |
|
w = export.run( |
|
weights=weights, imgsz=[imgsz], include=[f], batch_size=batch_size, device=device, half=half |
|
)[-1] |
|
assert suffix in str(w), "export failed" |
|
|
|
|
|
if model_type == SegmentationModel: |
|
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) |
|
metric = result[0][7] |
|
else: |
|
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task="speed", half=half) |
|
metric = result[0][3] |
|
speed = result[2][1] |
|
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) |
|
except Exception as e: |
|
if hard_fail: |
|
assert type(e) is AssertionError, f"Benchmark --hard-fail for {name}: {e}" |
|
LOGGER.warning(f"WARNING ⚠️ Benchmark failure for {name}: {e}") |
|
y.append([name, None, None, None]) |
|
if pt_only and i == 0: |
|
break |
|
|
|
|
|
LOGGER.info("\n") |
|
parse_opt() |
|
notebook_init() |
|
c = ["Format", "Size (MB)", "mAP50-95", "Inference time (ms)"] if map else ["Format", "Export", "", ""] |
|
py = pd.DataFrame(y, columns=c) |
|
LOGGER.info(f"\nBenchmarks complete ({time.time() - t:.2f}s)") |
|
LOGGER.info(str(py if map else py.iloc[:, :2])) |
|
if hard_fail and isinstance(hard_fail, str): |
|
metrics = py["mAP50-95"].array |
|
floor = eval(hard_fail) |
|
assert all(x > floor for x in metrics if pd.notna(x)), f"HARD FAIL: mAP50-95 < floor {floor}" |
|
return py |
|
|
|
|
|
def test( |
|
weights=ROOT / "yolov5s.pt", |
|
imgsz=640, |
|
batch_size=1, |
|
data=ROOT / "data/coco128.yaml", |
|
device="", |
|
half=False, |
|
test=False, |
|
pt_only=False, |
|
hard_fail=False, |
|
): |
|
"""Run YOLOv5 export tests for all supported formats and log the results, including inference speed and mAP.""" |
|
y, t = [], time.time() |
|
device = select_device(device) |
|
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): |
|
try: |
|
w = ( |
|
weights |
|
if f == "-" |
|
else export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] |
|
) |
|
assert suffix in str(w), "export failed" |
|
y.append([name, True]) |
|
except Exception: |
|
y.append([name, False]) |
|
|
|
|
|
LOGGER.info("\n") |
|
parse_opt() |
|
notebook_init() |
|
py = pd.DataFrame(y, columns=["Format", "Export"]) |
|
LOGGER.info(f"\nExports complete ({time.time() - t:.2f}s)") |
|
LOGGER.info(str(py)) |
|
return py |
|
|
|
|
|
def parse_opt(): |
|
"""Parses command-line arguments for YOLOv5 model inference configuration.""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s.pt", help="weights path") |
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="inference size (pixels)") |
|
parser.add_argument("--batch-size", type=int, default=1, help="batch size") |
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") |
|
parser.add_argument("--test", action="store_true", help="test exports only") |
|
parser.add_argument("--pt-only", action="store_true", help="test PyTorch only") |
|
parser.add_argument("--hard-fail", nargs="?", const=True, default=False, help="Exception on error or < min metric") |
|
opt = parser.parse_args() |
|
opt.data = check_yaml(opt.data) |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
"""Executes a test run if `opt.test` is True, otherwise starts training or inference with provided options.""" |
|
test(**vars(opt)) if opt.test else run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|