|
|
|
""" |
|
Train a YOLOv5 segment model on a segment dataset Models and datasets download automatically from the latest YOLOv5 |
|
release. |
|
|
|
Usage - Single-GPU training: |
|
$ python segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 # from pretrained (recommended) |
|
$ python segment/train.py --data coco128-seg.yaml --weights '' --cfg yolov5s-seg.yaml --img 640 # from scratch |
|
|
|
Usage - Multi-GPU DDP training: |
|
$ python -m torch.distributed.run --nproc_per_node 4 --master_port 1 segment/train.py --data coco128-seg.yaml --weights yolov5s-seg.pt --img 640 --device 0,1,2,3 |
|
|
|
Models: https://github.com/ultralytics/yolov5/tree/master/models |
|
Datasets: https://github.com/ultralytics/yolov5/tree/master/data |
|
Tutorial: https://docs.ultralytics.com/yolov5/tutorials/train_custom_data |
|
""" |
|
|
|
import argparse |
|
import math |
|
import os |
|
import random |
|
import subprocess |
|
import sys |
|
import time |
|
from copy import deepcopy |
|
from datetime import datetime |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import yaml |
|
from torch.optim import lr_scheduler |
|
from tqdm import tqdm |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
import segment.val as validate |
|
from models.experimental import attempt_load |
|
from models.yolo import SegmentationModel |
|
from utils.autoanchor import check_anchors |
|
from utils.autobatch import check_train_batch_size |
|
from utils.callbacks import Callbacks |
|
from utils.downloads import attempt_download, is_url |
|
from utils.general import ( |
|
LOGGER, |
|
TQDM_BAR_FORMAT, |
|
check_amp, |
|
check_dataset, |
|
check_file, |
|
check_git_info, |
|
check_git_status, |
|
check_img_size, |
|
check_requirements, |
|
check_suffix, |
|
check_yaml, |
|
colorstr, |
|
get_latest_run, |
|
increment_path, |
|
init_seeds, |
|
intersect_dicts, |
|
labels_to_class_weights, |
|
labels_to_image_weights, |
|
one_cycle, |
|
print_args, |
|
print_mutation, |
|
strip_optimizer, |
|
yaml_save, |
|
) |
|
from utils.loggers import GenericLogger |
|
from utils.plots import plot_evolve, plot_labels |
|
from utils.segment.dataloaders import create_dataloader |
|
from utils.segment.loss import ComputeLoss |
|
from utils.segment.metrics import KEYS, fitness |
|
from utils.segment.plots import plot_images_and_masks, plot_results_with_masks |
|
from utils.torch_utils import ( |
|
EarlyStopping, |
|
ModelEMA, |
|
de_parallel, |
|
select_device, |
|
smart_DDP, |
|
smart_optimizer, |
|
smart_resume, |
|
torch_distributed_zero_first, |
|
) |
|
|
|
LOCAL_RANK = int(os.getenv("LOCAL_RANK", -1)) |
|
RANK = int(os.getenv("RANK", -1)) |
|
WORLD_SIZE = int(os.getenv("WORLD_SIZE", 1)) |
|
GIT_INFO = check_git_info() |
|
|
|
|
|
def train(hyp, opt, device, callbacks): |
|
""" |
|
Trains the YOLOv5 model on a dataset, managing hyperparameters, model optimization, logging, and validation. |
|
|
|
`hyp` is path/to/hyp.yaml or hyp dictionary. |
|
""" |
|
( |
|
save_dir, |
|
epochs, |
|
batch_size, |
|
weights, |
|
single_cls, |
|
evolve, |
|
data, |
|
cfg, |
|
resume, |
|
noval, |
|
nosave, |
|
workers, |
|
freeze, |
|
mask_ratio, |
|
) = ( |
|
Path(opt.save_dir), |
|
opt.epochs, |
|
opt.batch_size, |
|
opt.weights, |
|
opt.single_cls, |
|
opt.evolve, |
|
opt.data, |
|
opt.cfg, |
|
opt.resume, |
|
opt.noval, |
|
opt.nosave, |
|
opt.workers, |
|
opt.freeze, |
|
opt.mask_ratio, |
|
) |
|
|
|
|
|
|
|
w = save_dir / "weights" |
|
(w.parent if evolve else w).mkdir(parents=True, exist_ok=True) |
|
last, best = w / "last.pt", w / "best.pt" |
|
|
|
|
|
if isinstance(hyp, str): |
|
with open(hyp, errors="ignore") as f: |
|
hyp = yaml.safe_load(f) |
|
LOGGER.info(colorstr("hyperparameters: ") + ", ".join(f"{k}={v}" for k, v in hyp.items())) |
|
opt.hyp = hyp.copy() |
|
|
|
|
|
if not evolve: |
|
yaml_save(save_dir / "hyp.yaml", hyp) |
|
yaml_save(save_dir / "opt.yaml", vars(opt)) |
|
|
|
|
|
data_dict = None |
|
if RANK in {-1, 0}: |
|
logger = GenericLogger(opt=opt, console_logger=LOGGER) |
|
|
|
|
|
plots = not evolve and not opt.noplots |
|
overlap = not opt.no_overlap |
|
cuda = device.type != "cpu" |
|
init_seeds(opt.seed + 1 + RANK, deterministic=True) |
|
with torch_distributed_zero_first(LOCAL_RANK): |
|
data_dict = data_dict or check_dataset(data) |
|
train_path, val_path = data_dict["train"], data_dict["val"] |
|
nc = 1 if single_cls else int(data_dict["nc"]) |
|
names = {0: "item"} if single_cls and len(data_dict["names"]) != 1 else data_dict["names"] |
|
is_coco = isinstance(val_path, str) and val_path.endswith("coco/val2017.txt") |
|
|
|
|
|
check_suffix(weights, ".pt") |
|
pretrained = weights.endswith(".pt") |
|
if pretrained: |
|
with torch_distributed_zero_first(LOCAL_RANK): |
|
weights = attempt_download(weights) |
|
ckpt = torch.load(weights, map_location="cpu") |
|
model = SegmentationModel(cfg or ckpt["model"].yaml, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) |
|
exclude = ["anchor"] if (cfg or hyp.get("anchors")) and not resume else [] |
|
csd = ckpt["model"].float().state_dict() |
|
csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) |
|
model.load_state_dict(csd, strict=False) |
|
LOGGER.info(f"Transferred {len(csd)}/{len(model.state_dict())} items from {weights}") |
|
else: |
|
model = SegmentationModel(cfg, ch=3, nc=nc, anchors=hyp.get("anchors")).to(device) |
|
amp = check_amp(model) |
|
|
|
|
|
freeze = [f"model.{x}." for x in (freeze if len(freeze) > 1 else range(freeze[0]))] |
|
for k, v in model.named_parameters(): |
|
v.requires_grad = True |
|
|
|
if any(x in k for x in freeze): |
|
LOGGER.info(f"freezing {k}") |
|
v.requires_grad = False |
|
|
|
|
|
gs = max(int(model.stride.max()), 32) |
|
imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) |
|
|
|
|
|
if RANK == -1 and batch_size == -1: |
|
batch_size = check_train_batch_size(model, imgsz, amp) |
|
logger.update_params({"batch_size": batch_size}) |
|
|
|
|
|
|
|
nbs = 64 |
|
accumulate = max(round(nbs / batch_size), 1) |
|
hyp["weight_decay"] *= batch_size * accumulate / nbs |
|
optimizer = smart_optimizer(model, opt.optimizer, hyp["lr0"], hyp["momentum"], hyp["weight_decay"]) |
|
|
|
|
|
if opt.cos_lr: |
|
lf = one_cycle(1, hyp["lrf"], epochs) |
|
else: |
|
|
|
def lf(x): |
|
"""Linear learning rate scheduler decreasing from 1 to hyp['lrf'] over 'epochs'.""" |
|
return (1 - x / epochs) * (1.0 - hyp["lrf"]) + hyp["lrf"] |
|
|
|
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) |
|
|
|
|
|
ema = ModelEMA(model) if RANK in {-1, 0} else None |
|
|
|
|
|
best_fitness, start_epoch = 0.0, 0 |
|
if pretrained: |
|
if resume: |
|
best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume) |
|
del ckpt, csd |
|
|
|
|
|
if cuda and RANK == -1 and torch.cuda.device_count() > 1: |
|
LOGGER.warning( |
|
"WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n" |
|
"See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started." |
|
) |
|
model = torch.nn.DataParallel(model) |
|
|
|
|
|
if opt.sync_bn and cuda and RANK != -1: |
|
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) |
|
LOGGER.info("Using SyncBatchNorm()") |
|
|
|
|
|
train_loader, dataset = create_dataloader( |
|
train_path, |
|
imgsz, |
|
batch_size // WORLD_SIZE, |
|
gs, |
|
single_cls, |
|
hyp=hyp, |
|
augment=True, |
|
cache=None if opt.cache == "val" else opt.cache, |
|
rect=opt.rect, |
|
rank=LOCAL_RANK, |
|
workers=workers, |
|
image_weights=opt.image_weights, |
|
quad=opt.quad, |
|
prefix=colorstr("train: "), |
|
shuffle=True, |
|
mask_downsample_ratio=mask_ratio, |
|
overlap_mask=overlap, |
|
) |
|
labels = np.concatenate(dataset.labels, 0) |
|
mlc = int(labels[:, 0].max()) |
|
assert mlc < nc, f"Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}" |
|
|
|
|
|
if RANK in {-1, 0}: |
|
val_loader = create_dataloader( |
|
val_path, |
|
imgsz, |
|
batch_size // WORLD_SIZE * 2, |
|
gs, |
|
single_cls, |
|
hyp=hyp, |
|
cache=None if noval else opt.cache, |
|
rect=True, |
|
rank=-1, |
|
workers=workers * 2, |
|
pad=0.5, |
|
mask_downsample_ratio=mask_ratio, |
|
overlap_mask=overlap, |
|
prefix=colorstr("val: "), |
|
)[0] |
|
|
|
if not resume: |
|
if not opt.noautoanchor: |
|
check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz) |
|
model.half().float() |
|
|
|
if plots: |
|
plot_labels(labels, names, save_dir) |
|
|
|
|
|
|
|
if cuda and RANK != -1: |
|
model = smart_DDP(model) |
|
|
|
|
|
nl = de_parallel(model).model[-1].nl |
|
hyp["box"] *= 3 / nl |
|
hyp["cls"] *= nc / 80 * 3 / nl |
|
hyp["obj"] *= (imgsz / 640) ** 2 * 3 / nl |
|
hyp["label_smoothing"] = opt.label_smoothing |
|
model.nc = nc |
|
model.hyp = hyp |
|
model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc |
|
model.names = names |
|
|
|
|
|
t0 = time.time() |
|
nb = len(train_loader) |
|
nw = max(round(hyp["warmup_epochs"] * nb), 100) |
|
|
|
last_opt_step = -1 |
|
maps = np.zeros(nc) |
|
results = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) |
|
scheduler.last_epoch = start_epoch - 1 |
|
scaler = torch.cuda.amp.GradScaler(enabled=amp) |
|
stopper, stop = EarlyStopping(patience=opt.patience), False |
|
compute_loss = ComputeLoss(model, overlap=overlap) |
|
|
|
LOGGER.info( |
|
f'Image sizes {imgsz} train, {imgsz} val\n' |
|
f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' |
|
f"Logging results to {colorstr('bold', save_dir)}\n" |
|
f'Starting training for {epochs} epochs...' |
|
) |
|
for epoch in range(start_epoch, epochs): |
|
|
|
model.train() |
|
|
|
|
|
if opt.image_weights: |
|
cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc |
|
iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) |
|
dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) |
|
|
|
|
|
|
|
|
|
|
|
mloss = torch.zeros(4, device=device) |
|
if RANK != -1: |
|
train_loader.sampler.set_epoch(epoch) |
|
pbar = enumerate(train_loader) |
|
LOGGER.info( |
|
("\n" + "%11s" * 8) |
|
% ("Epoch", "GPU_mem", "box_loss", "seg_loss", "obj_loss", "cls_loss", "Instances", "Size") |
|
) |
|
if RANK in {-1, 0}: |
|
pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT) |
|
optimizer.zero_grad() |
|
for i, (imgs, targets, paths, _, masks) in pbar: |
|
|
|
ni = i + nb * epoch |
|
imgs = imgs.to(device, non_blocking=True).float() / 255 |
|
|
|
|
|
if ni <= nw: |
|
xi = [0, nw] |
|
|
|
accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) |
|
for j, x in enumerate(optimizer.param_groups): |
|
|
|
x["lr"] = np.interp(ni, xi, [hyp["warmup_bias_lr"] if j == 0 else 0.0, x["initial_lr"] * lf(epoch)]) |
|
if "momentum" in x: |
|
x["momentum"] = np.interp(ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]) |
|
|
|
|
|
if opt.multi_scale: |
|
sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs |
|
sf = sz / max(imgs.shape[2:]) |
|
if sf != 1: |
|
ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] |
|
imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False) |
|
|
|
|
|
with torch.cuda.amp.autocast(amp): |
|
pred = model(imgs) |
|
loss, loss_items = compute_loss(pred, targets.to(device), masks=masks.to(device).float()) |
|
if RANK != -1: |
|
loss *= WORLD_SIZE |
|
if opt.quad: |
|
loss *= 4.0 |
|
|
|
|
|
scaler.scale(loss).backward() |
|
|
|
|
|
if ni - last_opt_step >= accumulate: |
|
scaler.unscale_(optimizer) |
|
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0) |
|
scaler.step(optimizer) |
|
scaler.update() |
|
optimizer.zero_grad() |
|
if ema: |
|
ema.update(model) |
|
last_opt_step = ni |
|
|
|
|
|
if RANK in {-1, 0}: |
|
mloss = (mloss * i + loss_items) / (i + 1) |
|
mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" |
|
pbar.set_description( |
|
("%11s" * 2 + "%11.4g" * 6) |
|
% (f"{epoch}/{epochs - 1}", mem, *mloss, targets.shape[0], imgs.shape[-1]) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if plots: |
|
if ni < 3: |
|
plot_images_and_masks(imgs, targets, masks, paths, save_dir / f"train_batch{ni}.jpg") |
|
if ni == 10: |
|
files = sorted(save_dir.glob("train*.jpg")) |
|
logger.log_images(files, "Mosaics", epoch) |
|
|
|
|
|
|
|
lr = [x["lr"] for x in optimizer.param_groups] |
|
scheduler.step() |
|
|
|
if RANK in {-1, 0}: |
|
|
|
|
|
ema.update_attr(model, include=["yaml", "nc", "hyp", "names", "stride", "class_weights"]) |
|
final_epoch = (epoch + 1 == epochs) or stopper.possible_stop |
|
if not noval or final_epoch: |
|
results, maps, _ = validate.run( |
|
data_dict, |
|
batch_size=batch_size // WORLD_SIZE * 2, |
|
imgsz=imgsz, |
|
half=amp, |
|
model=ema.ema, |
|
single_cls=single_cls, |
|
dataloader=val_loader, |
|
save_dir=save_dir, |
|
plots=False, |
|
callbacks=callbacks, |
|
compute_loss=compute_loss, |
|
mask_downsample_ratio=mask_ratio, |
|
overlap=overlap, |
|
) |
|
|
|
|
|
fi = fitness(np.array(results).reshape(1, -1)) |
|
stop = stopper(epoch=epoch, fitness=fi) |
|
if fi > best_fitness: |
|
best_fitness = fi |
|
log_vals = list(mloss) + list(results) + lr |
|
|
|
|
|
metrics_dict = dict(zip(KEYS, log_vals)) |
|
logger.log_metrics(metrics_dict, epoch) |
|
|
|
|
|
if (not nosave) or (final_epoch and not evolve): |
|
ckpt = { |
|
"epoch": epoch, |
|
"best_fitness": best_fitness, |
|
"model": deepcopy(de_parallel(model)).half(), |
|
"ema": deepcopy(ema.ema).half(), |
|
"updates": ema.updates, |
|
"optimizer": optimizer.state_dict(), |
|
"opt": vars(opt), |
|
"git": GIT_INFO, |
|
"date": datetime.now().isoformat(), |
|
} |
|
|
|
|
|
torch.save(ckpt, last) |
|
if best_fitness == fi: |
|
torch.save(ckpt, best) |
|
if opt.save_period > 0 and epoch % opt.save_period == 0: |
|
torch.save(ckpt, w / f"epoch{epoch}.pt") |
|
logger.log_model(w / f"epoch{epoch}.pt") |
|
del ckpt |
|
|
|
|
|
|
|
if RANK != -1: |
|
broadcast_list = [stop if RANK == 0 else None] |
|
dist.broadcast_object_list(broadcast_list, 0) |
|
if RANK != 0: |
|
stop = broadcast_list[0] |
|
if stop: |
|
break |
|
|
|
|
|
|
|
if RANK in {-1, 0}: |
|
LOGGER.info(f"\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.") |
|
for f in last, best: |
|
if f.exists(): |
|
strip_optimizer(f) |
|
if f is best: |
|
LOGGER.info(f"\nValidating {f}...") |
|
results, _, _ = validate.run( |
|
data_dict, |
|
batch_size=batch_size // WORLD_SIZE * 2, |
|
imgsz=imgsz, |
|
model=attempt_load(f, device).half(), |
|
iou_thres=0.65 if is_coco else 0.60, |
|
single_cls=single_cls, |
|
dataloader=val_loader, |
|
save_dir=save_dir, |
|
save_json=is_coco, |
|
verbose=True, |
|
plots=plots, |
|
callbacks=callbacks, |
|
compute_loss=compute_loss, |
|
mask_downsample_ratio=mask_ratio, |
|
overlap=overlap, |
|
) |
|
if is_coco: |
|
|
|
metrics_dict = dict(zip(KEYS, list(mloss) + list(results) + lr)) |
|
logger.log_metrics(metrics_dict, epoch) |
|
|
|
|
|
|
|
logger.log_metrics(dict(zip(KEYS[4:16], results)), epochs) |
|
if not opt.evolve: |
|
logger.log_model(best, epoch) |
|
if plots: |
|
plot_results_with_masks(file=save_dir / "results.csv") |
|
files = ["results.png", "confusion_matrix.png", *(f"{x}_curve.png" for x in ("F1", "PR", "P", "R"))] |
|
files = [(save_dir / f) for f in files if (save_dir / f).exists()] |
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") |
|
logger.log_images(files, "Results", epoch + 1) |
|
logger.log_images(sorted(save_dir.glob("val*.jpg")), "Validation", epoch + 1) |
|
torch.cuda.empty_cache() |
|
return results |
|
|
|
|
|
def parse_opt(known=False): |
|
""" |
|
Parses command line arguments for training configurations, returning parsed arguments. |
|
|
|
Supports both known and unknown args. |
|
""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--weights", type=str, default=ROOT / "yolov5s-seg.pt", help="initial weights path") |
|
parser.add_argument("--cfg", type=str, default="", help="model.yaml path") |
|
parser.add_argument("--data", type=str, default=ROOT / "data/coco128-seg.yaml", help="dataset.yaml path") |
|
parser.add_argument("--hyp", type=str, default=ROOT / "data/hyps/hyp.scratch-low.yaml", help="hyperparameters path") |
|
parser.add_argument("--epochs", type=int, default=100, help="total training epochs") |
|
parser.add_argument("--batch-size", type=int, default=16, help="total batch size for all GPUs, -1 for autobatch") |
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=640, help="train, val image size (pixels)") |
|
parser.add_argument("--rect", action="store_true", help="rectangular training") |
|
parser.add_argument("--resume", nargs="?", const=True, default=False, help="resume most recent training") |
|
parser.add_argument("--nosave", action="store_true", help="only save final checkpoint") |
|
parser.add_argument("--noval", action="store_true", help="only validate final epoch") |
|
parser.add_argument("--noautoanchor", action="store_true", help="disable AutoAnchor") |
|
parser.add_argument("--noplots", action="store_true", help="save no plot files") |
|
parser.add_argument("--evolve", type=int, nargs="?", const=300, help="evolve hyperparameters for x generations") |
|
parser.add_argument("--bucket", type=str, default="", help="gsutil bucket") |
|
parser.add_argument("--cache", type=str, nargs="?", const="ram", help="image --cache ram/disk") |
|
parser.add_argument("--image-weights", action="store_true", help="use weighted image selection for training") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--multi-scale", action="store_true", help="vary img-size +/- 50%%") |
|
parser.add_argument("--single-cls", action="store_true", help="train multi-class data as single-class") |
|
parser.add_argument("--optimizer", type=str, choices=["SGD", "Adam", "AdamW"], default="SGD", help="optimizer") |
|
parser.add_argument("--sync-bn", action="store_true", help="use SyncBatchNorm, only available in DDP mode") |
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") |
|
parser.add_argument("--project", default=ROOT / "runs/train-seg", help="save to project/name") |
|
parser.add_argument("--name", default="exp", help="save to project/name") |
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") |
|
parser.add_argument("--quad", action="store_true", help="quad dataloader") |
|
parser.add_argument("--cos-lr", action="store_true", help="cosine LR scheduler") |
|
parser.add_argument("--label-smoothing", type=float, default=0.0, help="Label smoothing epsilon") |
|
parser.add_argument("--patience", type=int, default=100, help="EarlyStopping patience (epochs without improvement)") |
|
parser.add_argument("--freeze", nargs="+", type=int, default=[0], help="Freeze layers: backbone=10, first3=0 1 2") |
|
parser.add_argument("--save-period", type=int, default=-1, help="Save checkpoint every x epochs (disabled if < 1)") |
|
parser.add_argument("--seed", type=int, default=0, help="Global training seed") |
|
parser.add_argument("--local_rank", type=int, default=-1, help="Automatic DDP Multi-GPU argument, do not modify") |
|
|
|
|
|
parser.add_argument("--mask-ratio", type=int, default=4, help="Downsample the truth masks to saving memory") |
|
parser.add_argument("--no-overlap", action="store_true", help="Overlap masks train faster at slightly less mAP") |
|
|
|
return parser.parse_known_args()[0] if known else parser.parse_args() |
|
|
|
|
|
def main(opt, callbacks=Callbacks()): |
|
"""Initializes training or evolution of YOLOv5 models based on provided configuration and options.""" |
|
if RANK in {-1, 0}: |
|
print_args(vars(opt)) |
|
check_git_status() |
|
check_requirements(ROOT / "requirements.txt") |
|
|
|
|
|
if opt.resume and not opt.evolve: |
|
last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run()) |
|
opt_yaml = last.parent.parent / "opt.yaml" |
|
opt_data = opt.data |
|
if opt_yaml.is_file(): |
|
with open(opt_yaml, errors="ignore") as f: |
|
d = yaml.safe_load(f) |
|
else: |
|
d = torch.load(last, map_location="cpu")["opt"] |
|
opt = argparse.Namespace(**d) |
|
opt.cfg, opt.weights, opt.resume = "", str(last), True |
|
if is_url(opt_data): |
|
opt.data = check_file(opt_data) |
|
else: |
|
opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = ( |
|
check_file(opt.data), |
|
check_yaml(opt.cfg), |
|
check_yaml(opt.hyp), |
|
str(opt.weights), |
|
str(opt.project), |
|
) |
|
assert len(opt.cfg) or len(opt.weights), "either --cfg or --weights must be specified" |
|
if opt.evolve: |
|
if opt.project == str(ROOT / "runs/train-seg"): |
|
opt.project = str(ROOT / "runs/evolve-seg") |
|
opt.exist_ok, opt.resume = opt.resume, False |
|
if opt.name == "cfg": |
|
opt.name = Path(opt.cfg).stem |
|
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) |
|
|
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size) |
|
if LOCAL_RANK != -1: |
|
msg = "is not compatible with YOLOv5 Multi-GPU DDP training" |
|
assert not opt.image_weights, f"--image-weights {msg}" |
|
assert not opt.evolve, f"--evolve {msg}" |
|
assert opt.batch_size != -1, f"AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size" |
|
assert opt.batch_size % WORLD_SIZE == 0, f"--batch-size {opt.batch_size} must be multiple of WORLD_SIZE" |
|
assert torch.cuda.device_count() > LOCAL_RANK, "insufficient CUDA devices for DDP command" |
|
torch.cuda.set_device(LOCAL_RANK) |
|
device = torch.device("cuda", LOCAL_RANK) |
|
dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") |
|
|
|
|
|
if not opt.evolve: |
|
train(opt.hyp, opt, device, callbacks) |
|
|
|
|
|
else: |
|
|
|
meta = { |
|
"lr0": (1, 1e-5, 1e-1), |
|
"lrf": (1, 0.01, 1.0), |
|
"momentum": (0.3, 0.6, 0.98), |
|
"weight_decay": (1, 0.0, 0.001), |
|
"warmup_epochs": (1, 0.0, 5.0), |
|
"warmup_momentum": (1, 0.0, 0.95), |
|
"warmup_bias_lr": (1, 0.0, 0.2), |
|
"box": (1, 0.02, 0.2), |
|
"cls": (1, 0.2, 4.0), |
|
"cls_pw": (1, 0.5, 2.0), |
|
"obj": (1, 0.2, 4.0), |
|
"obj_pw": (1, 0.5, 2.0), |
|
"iou_t": (0, 0.1, 0.7), |
|
"anchor_t": (1, 2.0, 8.0), |
|
"anchors": (2, 2.0, 10.0), |
|
"fl_gamma": (0, 0.0, 2.0), |
|
"hsv_h": (1, 0.0, 0.1), |
|
"hsv_s": (1, 0.0, 0.9), |
|
"hsv_v": (1, 0.0, 0.9), |
|
"degrees": (1, 0.0, 45.0), |
|
"translate": (1, 0.0, 0.9), |
|
"scale": (1, 0.0, 0.9), |
|
"shear": (1, 0.0, 10.0), |
|
"perspective": (0, 0.0, 0.001), |
|
"flipud": (1, 0.0, 1.0), |
|
"fliplr": (0, 0.0, 1.0), |
|
"mosaic": (1, 0.0, 1.0), |
|
"mixup": (1, 0.0, 1.0), |
|
"copy_paste": (1, 0.0, 1.0), |
|
} |
|
|
|
with open(opt.hyp, errors="ignore") as f: |
|
hyp = yaml.safe_load(f) |
|
if "anchors" not in hyp: |
|
hyp["anchors"] = 3 |
|
if opt.noautoanchor: |
|
del hyp["anchors"], meta["anchors"] |
|
opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) |
|
|
|
evolve_yaml, evolve_csv = save_dir / "hyp_evolve.yaml", save_dir / "evolve.csv" |
|
if opt.bucket: |
|
|
|
subprocess.run( |
|
[ |
|
"gsutil", |
|
"cp", |
|
f"gs://{opt.bucket}/evolve.csv", |
|
str(evolve_csv), |
|
] |
|
) |
|
|
|
for _ in range(opt.evolve): |
|
if evolve_csv.exists(): |
|
|
|
parent = "single" |
|
x = np.loadtxt(evolve_csv, ndmin=2, delimiter=",", skiprows=1) |
|
n = min(5, len(x)) |
|
x = x[np.argsort(-fitness(x))][:n] |
|
w = fitness(x) - fitness(x).min() + 1e-6 |
|
if parent == "single" or len(x) == 1: |
|
|
|
x = x[random.choices(range(n), weights=w)[0]] |
|
elif parent == "weighted": |
|
x = (x * w.reshape(n, 1)).sum(0) / w.sum() |
|
|
|
|
|
mp, s = 0.8, 0.2 |
|
npr = np.random |
|
npr.seed(int(time.time())) |
|
g = np.array([meta[k][0] for k in hyp.keys()]) |
|
ng = len(meta) |
|
v = np.ones(ng) |
|
while all(v == 1): |
|
v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) |
|
for i, k in enumerate(hyp.keys()): |
|
hyp[k] = float(x[i + 12] * v[i]) |
|
|
|
|
|
for k, v in meta.items(): |
|
hyp[k] = max(hyp[k], v[1]) |
|
hyp[k] = min(hyp[k], v[2]) |
|
hyp[k] = round(hyp[k], 5) |
|
|
|
|
|
results = train(hyp.copy(), opt, device, callbacks) |
|
callbacks = Callbacks() |
|
|
|
print_mutation(KEYS[4:16], results, hyp.copy(), save_dir, opt.bucket) |
|
|
|
|
|
plot_evolve(evolve_csv) |
|
LOGGER.info( |
|
f'Hyperparameter evolution finished {opt.evolve} generations\n' |
|
f"Results saved to {colorstr('bold', save_dir)}\n" |
|
f'Usage example: $ python train.py --hyp {evolve_yaml}' |
|
) |
|
|
|
|
|
def run(**kwargs): |
|
""" |
|
Executes YOLOv5 training with given parameters, altering options programmatically; returns updated options. |
|
|
|
Example: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') |
|
""" |
|
opt = parse_opt(True) |
|
for k, v in kwargs.items(): |
|
setattr(opt, k, v) |
|
main(opt) |
|
return opt |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|