|
|
|
""" |
|
Validate a trained YOLOv5 classification model on a classification dataset. |
|
|
|
Usage: |
|
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) |
|
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet |
|
|
|
Usage - formats: |
|
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch |
|
yolov5s-cls.torchscript # TorchScript |
|
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn |
|
yolov5s-cls_openvino_model # OpenVINO |
|
yolov5s-cls.engine # TensorRT |
|
yolov5s-cls.mlmodel # CoreML (macOS-only) |
|
yolov5s-cls_saved_model # TensorFlow SavedModel |
|
yolov5s-cls.pb # TensorFlow GraphDef |
|
yolov5s-cls.tflite # TensorFlow Lite |
|
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU |
|
yolov5s-cls_paddle_model # PaddlePaddle |
|
""" |
|
|
|
import argparse |
|
import os |
|
import sys |
|
from pathlib import Path |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[1] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
from models.common import DetectMultiBackend |
|
from utils.dataloaders import create_classification_dataloader |
|
from utils.general import ( |
|
LOGGER, |
|
TQDM_BAR_FORMAT, |
|
Profile, |
|
check_img_size, |
|
check_requirements, |
|
colorstr, |
|
increment_path, |
|
print_args, |
|
) |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
data=ROOT / "../datasets/mnist", |
|
weights=ROOT / "yolov5s-cls.pt", |
|
batch_size=128, |
|
imgsz=224, |
|
device="", |
|
workers=8, |
|
verbose=False, |
|
project=ROOT / "runs/val-cls", |
|
name="exp", |
|
exist_ok=False, |
|
half=False, |
|
dnn=False, |
|
model=None, |
|
dataloader=None, |
|
criterion=None, |
|
pbar=None, |
|
): |
|
"""Validates a YOLOv5 classification model on a dataset, computing metrics like top1 and top5 accuracy.""" |
|
|
|
training = model is not None |
|
if training: |
|
device, pt, jit, engine = next(model.parameters()).device, True, False, False |
|
half &= device.type != "cpu" |
|
model.half() if half else model.float() |
|
else: |
|
device = select_device(device, batch_size=batch_size) |
|
|
|
|
|
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) |
|
save_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) |
|
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine |
|
imgsz = check_img_size(imgsz, s=stride) |
|
half = model.fp16 |
|
if engine: |
|
batch_size = model.batch_size |
|
else: |
|
device = model.device |
|
if not (pt or jit): |
|
batch_size = 1 |
|
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") |
|
|
|
|
|
data = Path(data) |
|
test_dir = data / "test" if (data / "test").exists() else data / "val" |
|
dataloader = create_classification_dataloader( |
|
path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers |
|
) |
|
|
|
model.eval() |
|
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device)) |
|
n = len(dataloader) |
|
action = "validating" if dataloader.dataset.root.stem == "val" else "testing" |
|
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}" |
|
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0) |
|
with torch.cuda.amp.autocast(enabled=device.type != "cpu"): |
|
for images, labels in bar: |
|
with dt[0]: |
|
images, labels = images.to(device, non_blocking=True), labels.to(device) |
|
|
|
with dt[1]: |
|
y = model(images) |
|
|
|
with dt[2]: |
|
pred.append(y.argsort(1, descending=True)[:, :5]) |
|
targets.append(labels) |
|
if criterion: |
|
loss += criterion(y, labels) |
|
|
|
loss /= n |
|
pred, targets = torch.cat(pred), torch.cat(targets) |
|
correct = (targets[:, None] == pred).float() |
|
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) |
|
top1, top5 = acc.mean(0).tolist() |
|
|
|
if pbar: |
|
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}" |
|
if verbose: |
|
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") |
|
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") |
|
for i, c in model.names.items(): |
|
acc_i = acc[targets == i] |
|
top1i, top5i = acc_i.mean(0).tolist() |
|
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}") |
|
|
|
|
|
t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) |
|
shape = (1, 3, imgsz, imgsz) |
|
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t) |
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") |
|
|
|
return top1, top5, loss |
|
|
|
|
|
def parse_opt(): |
|
"""Parses and returns command line arguments for YOLOv5 model evaluation and inference settings.""" |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path") |
|
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)") |
|
parser.add_argument("--batch-size", type=int, default=128, help="batch size") |
|
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)") |
|
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") |
|
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") |
|
parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output") |
|
parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name") |
|
parser.add_argument("--name", default="exp", help="save to project/name") |
|
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") |
|
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") |
|
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") |
|
opt = parser.parse_args() |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
"""Executes the YOLOv5 model prediction workflow, handling argument parsing and requirement checks.""" |
|
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |
|
|