|
|
|
"""Activation functions.""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class SiLU(nn.Module): |
|
@staticmethod |
|
def forward(x): |
|
""" |
|
Applies the Sigmoid-weighted Linear Unit (SiLU) activation function. |
|
|
|
https://arxiv.org/pdf/1606.08415.pdf. |
|
""" |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
class Hardswish(nn.Module): |
|
@staticmethod |
|
def forward(x): |
|
""" |
|
Applies the Hardswish activation function, compatible with TorchScript, CoreML, and ONNX. |
|
|
|
Equivalent to x * F.hardsigmoid(x) |
|
""" |
|
return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 |
|
|
|
|
|
class Mish(nn.Module): |
|
"""Mish activation https://github.com/digantamisra98/Mish.""" |
|
|
|
@staticmethod |
|
def forward(x): |
|
"""Applies the Mish activation function, a smooth alternative to ReLU.""" |
|
return x * F.softplus(x).tanh() |
|
|
|
|
|
class MemoryEfficientMish(nn.Module): |
|
class F(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, x): |
|
"""Applies the Mish activation function, a smooth ReLU alternative, to the input tensor `x`.""" |
|
ctx.save_for_backward(x) |
|
return x.mul(torch.tanh(F.softplus(x))) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
"""Computes the gradient of the Mish activation function with respect to input `x`.""" |
|
x = ctx.saved_tensors[0] |
|
sx = torch.sigmoid(x) |
|
fx = F.softplus(x).tanh() |
|
return grad_output * (fx + x * sx * (1 - fx * fx)) |
|
|
|
def forward(self, x): |
|
"""Applies the Mish activation function to the input tensor `x`.""" |
|
return self.F.apply(x) |
|
|
|
|
|
class FReLU(nn.Module): |
|
"""FReLU activation https://arxiv.org/abs/2007.11824.""" |
|
|
|
def __init__(self, c1, k=3): |
|
"""Initializes FReLU activation with channel `c1` and kernel size `k`.""" |
|
super().__init__() |
|
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) |
|
self.bn = nn.BatchNorm2d(c1) |
|
|
|
def forward(self, x): |
|
""" |
|
Applies FReLU activation with max operation between input and BN-convolved input. |
|
|
|
https://arxiv.org/abs/2007.11824 |
|
""" |
|
return torch.max(x, self.bn(self.conv(x))) |
|
|
|
|
|
class AconC(nn.Module): |
|
""" |
|
ACON activation (activate or not) function. |
|
|
|
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter |
|
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. |
|
""" |
|
|
|
def __init__(self, c1): |
|
"""Initializes AconC with learnable parameters p1, p2, and beta for channel-wise activation control.""" |
|
super().__init__() |
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) |
|
|
|
def forward(self, x): |
|
"""Applies AconC activation function with learnable parameters for channel-wise control on input tensor x.""" |
|
dpx = (self.p1 - self.p2) * x |
|
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x |
|
|
|
|
|
class MetaAconC(nn.Module): |
|
""" |
|
ACON activation (activate or not) function. |
|
|
|
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter |
|
See "Activate or Not: Learning Customized Activation" https://arxiv.org/pdf/2009.04759.pdf. |
|
""" |
|
|
|
def __init__(self, c1, k=1, s=1, r=16): |
|
"""Initializes MetaAconC with params: channel_in (c1), kernel size (k=1), stride (s=1), reduction (r=16).""" |
|
super().__init__() |
|
c2 = max(r, c1 // r) |
|
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) |
|
self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) |
|
self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) |
|
|
|
|
|
|
|
def forward(self, x): |
|
"""Applies a forward pass transforming input `x` using learnable parameters and sigmoid activation.""" |
|
y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) |
|
|
|
|
|
beta = torch.sigmoid(self.fc2(self.fc1(y))) |
|
dpx = (self.p1 - self.p2) * x |
|
return dpx * torch.sigmoid(beta * dpx) + self.p2 * x |
|
|