|
|
|
"""Run a Flask REST API exposing one or more YOLOv5s models.""" |
|
|
|
import argparse |
|
import io |
|
|
|
import torch |
|
from flask import Flask, request |
|
from PIL import Image |
|
|
|
app = Flask(__name__) |
|
models = {} |
|
|
|
DETECTION_URL = "/v1/object-detection/<model>" |
|
|
|
|
|
@app.route(DETECTION_URL, methods=["POST"]) |
|
def predict(model): |
|
"""Predict and return object detections in JSON format given an image and model name via a Flask REST API POST |
|
request. |
|
""" |
|
if request.method != "POST": |
|
return |
|
|
|
if request.files.get("image"): |
|
|
|
|
|
|
|
|
|
|
|
im_file = request.files["image"] |
|
im_bytes = im_file.read() |
|
im = Image.open(io.BytesIO(im_bytes)) |
|
|
|
if model in models: |
|
results = models[model](im, size=640) |
|
return results.pandas().xyxy[0].to_json(orient="records") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") |
|
parser.add_argument("--port", default=5000, type=int, help="port number") |
|
parser.add_argument("--model", nargs="+", default=["yolov5s"], help="model(s) to run, i.e. --model yolov5n yolov5s") |
|
opt = parser.parse_args() |
|
|
|
for m in opt.model: |
|
models[m] = torch.hub.load("ultralytics/yolov5", m, force_reload=True, skip_validation=True) |
|
|
|
app.run(host="0.0.0.0", port=opt.port) |
|
|