|
|
|
"""Image augmentation functions.""" |
|
|
|
import math |
|
import random |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
from ..augmentations import box_candidates |
|
from ..general import resample_segments, segment2box |
|
|
|
|
|
def mixup(im, labels, segments, im2, labels2, segments2): |
|
""" |
|
Applies MixUp augmentation blending two images, labels, and segments with a random ratio. |
|
|
|
See https://arxiv.org/pdf/1710.09412.pdf |
|
""" |
|
r = np.random.beta(32.0, 32.0) |
|
im = (im * r + im2 * (1 - r)).astype(np.uint8) |
|
labels = np.concatenate((labels, labels2), 0) |
|
segments = np.concatenate((segments, segments2), 0) |
|
return im, labels, segments |
|
|
|
|
|
def random_perspective( |
|
im, targets=(), segments=(), degrees=10, translate=0.1, scale=0.1, shear=10, perspective=0.0, border=(0, 0) |
|
): |
|
|
|
|
|
|
|
"""Applies random perspective, rotation, scale, shear, and translation augmentations to an image and targets.""" |
|
height = im.shape[0] + border[0] * 2 |
|
width = im.shape[1] + border[1] * 2 |
|
|
|
|
|
C = np.eye(3) |
|
C[0, 2] = -im.shape[1] / 2 |
|
C[1, 2] = -im.shape[0] / 2 |
|
|
|
|
|
P = np.eye(3) |
|
P[2, 0] = random.uniform(-perspective, perspective) |
|
P[2, 1] = random.uniform(-perspective, perspective) |
|
|
|
|
|
R = np.eye(3) |
|
a = random.uniform(-degrees, degrees) |
|
|
|
s = random.uniform(1 - scale, 1 + scale) |
|
|
|
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) |
|
|
|
|
|
S = np.eye(3) |
|
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) |
|
|
|
|
|
T = np.eye(3) |
|
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width |
|
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height |
|
|
|
|
|
M = T @ S @ R @ P @ C |
|
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): |
|
if perspective: |
|
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) |
|
else: |
|
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n = len(targets) |
|
new_segments = [] |
|
if n: |
|
new = np.zeros((n, 4)) |
|
segments = resample_segments(segments) |
|
for i, segment in enumerate(segments): |
|
xy = np.ones((len(segment), 3)) |
|
xy[:, :2] = segment |
|
xy = xy @ M.T |
|
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] |
|
|
|
|
|
new[i] = segment2box(xy, width, height) |
|
new_segments.append(xy) |
|
|
|
|
|
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01) |
|
targets = targets[i] |
|
targets[:, 1:5] = new[i] |
|
new_segments = np.array(new_segments)[i] |
|
|
|
return im, targets, new_segments |
|
|